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Abstract 

Taking the lead from orthodox quantum theory, I will introduce a handy generalization of the Boolean approach 
to propositions and questions: the orthoalgebraic framework.  I will demonstrate that this formalism relates to a 
formal theory of questions (or ‘observables’ in the physicist’s jargon). This theory allows formulating attitude 
questions, which normally are non-commuting, i.e., the ordering of the questions affects the answer behavior of 
attitude questions. Further, it allows the expression of conditional questions such as “If Mary reads the book, will 
she recommend it to Peter?”, and thus gives the framework the semantic power of raising issues and being 
informative at the same time. In the case of commuting observables, there are close similarities between the 
orthoalgebraic approach to questions and the Jäger/Hulstijn approach to question semantics. However, there are 
also differences between the two approaches even in case of commuting observables. The main difference is that 
the Jäger/Hulstijn approach relates to a partition theory of questions whereas the orthoalgebraic approach relates 
to a ‘decorated’ partition theory (i.e. the elements of the partition are decorated by certain semantic values). 
Surprisingly, the orthoalgebraic approach is able to overcome most of the difficulties of the Jäger/Hulstijn 
approach. Furthermore, the general approach is suitable to describe the different types of (non-commutative) 
attitude questions as investigated in modern survey research. Concluding, I will suggest that an active dialogue 
between the traditional model-theoretic approaches to semantics and the orthoalgebraic paradigm is mandatory. 

 

1 Introduction  
In modern survey research (e.g. Schuman and Presser 1981, Tourangeau, Rips, and Rasinski 
2000) a distinction is made between factual questions and attitude questions. In a factual 
question the interviewer typically asks the respondent about her personal activities or 
circumstances. In attitude questions, by contrast, the interviewer seeks the respondent's 
opinion about an issue.  
 
(1) a. What is your name? 

b. Where do you live? 
c. In what year did you first have an episode of back pain that lasted longer than a week? 
 

(2) a. Do you think the use of marijuana should be made legal, or not? 
b. Would you be for or against sex education in the public schools? 
c. On the average, (Blacks/African-Americans) have worse jobs, income, and housing 
than white people. Do you think these differences are mainly due to discrimination?1 

 
For factual questions of the kind illustrated in (1), autobiographical memory forms a basic 
part of the required knowledge. To answer the questions, information is seldom retrieved from 
the direct experience of some facts; instead, it is mostly inferred. Attitude items, in contrast, 
rarely refer to any well-defined set of generally acceptable facts. If there is a set of facts that 
determine the accuracy of answers to questions like (2a), these are presumably about the 
respondent's beliefs or attitudes. The subjective character of attitudes makes it difficult, if not 
impossible, to verify survey reports about them. Moreover, the respondent may have a 

                                                 
1 The questions in (2) are taken from the General Social Survey, as quoted in Tourangeau et al.  (2000:  165).  
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number of beliefs about marijuana and other illicit drugs – some of them contradictory. 
Hence, it is unclear which beliefs the respondent could reasonably consider in framing an 
answer to (2a). Because of this open-ended character, it does not make much sense even to 
discuss the accuracy of answers to questions like those listed in (2).  
 So far as I can see, logical-semantic analyses of questions have almost exclusively 
concentrated on factual questions. Despite their practical importance attitude questions have 
been widely ignored in this literature. Presently, I cannot see that anybody has made any real 
connection between modern survey research and the semantics of questions, although there 
are interesting empirical findings which cry for a logical-semantic analysis. For example, 
survey researchers have demonstrated repeatedly that the same question often produces quite 
different answers, depending on the question context (for numerous survey examples, see 
Schuman and Presser 1981, Sudman and Bradburn 1982). To cite just one particularly well-
documented example, a group of (North-American) subjects were asked whether "the United 
States should let Communist reporters come in here and send back to their papers the news as 
they see it?" The other group was asked whether "a Communist country like Russia should let 
American newspaper reporters come in and send back to their papers the news as they see it?" 
Support for free access for the Communist reporters varied sharply according to whether that 
question preceded or followed the question on American reporters.2 
 The example illustrates the non-commutative character of attitude questions. This 
contrasts with factual questions, which normally do not show these effects. The non-
commutative character of questions invites to consider the analogy between the treatment of 
questions in natural language semantics and the treatment of observables in modern physics. 
An observable is a question addressing nature (Where is the particle? What is its momentum? 
How many particles are in this domain?). And a measurement is the process of answering 
such questions. In classical physics, the ordering of the observables does not matter: 
observables commute. However, this is not the case if one considers observables that relate to 
properties of the micro world, such as the place and the momentum of photons, or the place 
and the energy of electrons. Heisenberg’s main motivation for developing his theory (which 
was later called matrix mechanics) concerned the non-commutativity of the observables under 
discussion. Heisenberg’s famous principle of uncertainty is a direct consequence of the fact 
that the order of observables can matter. Investigating the close mathematical analogy 
between order effects for attitude questions and order effects for physical observables is one 
important concern of the present article. 
 There is another formal aspect that connects the semantic analysis of questions to the 
mathematical analysis of observables. It concerns the partition of the state space that 
underlies the analysis of questions and observables. Consider, for example, the semantics of 
questions as developed by Groenendijk & Stokhof (1984, 1997) (abbreviated to GS). It is 
assumed that the state space is formed by a set of possible worlds which constitute the basis 
for building propositions and other semantic objects. Further, it is assumed that a question 
partitions the state space in equivalent classes where two states are equivalent if they give the 
same answer. This picture is not unlike the formal treatment of observables in quantum 
physics (e.g. Von Neumann 1932, Birkhoff and von Neumann 1936). In this case the state 
space is formed by a vector space and it is assumed that an observable partitions the state 
space in equivalent classes. Two states are seen as equivalent if they give the same result 
when measuring the observable. 
 Quantum physics reduces to classical physics if all observables are commuting. In this 
case, possible worlds can be identified with an (orthonormal) base of vectors hulling the 
whole vector space. It could be supposed that in this special case the treatment of observables 

                                                 
2 The differences are quite dramatic: in a study of 1950, 36% accepted communist reporters when the communist 
question came first and 73% accepted them when the question came second. When the study was repeated in 
1982, the numbers changed to 55% vs. 75%. 
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and questions coincides in quantum physics and partition semantics. However this is not the 
case. The main reason is that in quantum theory the partitions are decorated (by the 
eigenvalues of the corresponding eigenspaces). The GS partition semantics does not know any 
decorations. Hence, questions such as (3a) and (3b) are considered equivalent assuming that 
‘open’ and ‘not closed’ are semantically equivalent.3  
 
(3) a. Is the door open? 

b. Is the door closed? 
c.  Peter knows if the door is open.  
d. Peter knows if the door is closed.  

 
Consequently, the equivalence of (3c) and (3d) comes out automatically as a result of the 
equivalence between (3a) and (3b). Though not doubting the equivalence between (3c) and 
(3d) there are some doubts about the semantic equivalence of the two questions (3a) and (3b). 
The partition theory cannot handle the difference between the term-answers ‘yes’ and ‘no’. 
“The reason is that the two propositions in the question meaning cannot be identified as 
‘positive’ and ‘negative’, as one proposition is just the complement of the other – recall that 
all we have is sets of possible worlds, not their descriptions.” (Krifka 2001: 290).4   
 Another difference between the two treatments concerns the analysis of conditional 
questions, illustrated by the following example5: 
 
(4) If electron 1 has spin ↑ what is the spin of electron 2? 
 
Using the operator formalism of quantum theory, it is not difficult to formalize the semantic 
content of (4). However, the standard GS partition theory does not introduce a conditional 
operator general enough to express conditional questions. To be sure, the GS partition theory 
makes a strict distinction between questions and answers. Semantically, questions are 
described by an equivalence relation and answers are described by propositions (sets of 
possible worlds). Surprisingly, such a distinction is not made in quantum physics where both 
questions (observables) and answers (projection spaces) can be treated as particular linear 
operators. It is exactly this uniform treatment that allows a straightforward treatment of 
conditional questions. Recently, Gerhard Jäger and Joris Hulstijn have proposed an extension 
of the GS question theory that is able to handle conditional questions. We will call this 
approach the Jäger/Hulstijn (JH) approach (Jäger 1996, Hulstijn 1997). In their analysis of 
conditional questions a new operator is designed which will deserve our critical attention.  
 In the present paper, I follow three aims. Firstly, I will discuss the similarities and 
differences between the question theories developed by students of formal semantics and 
those developed independently (and much earlier) by physicists. In order to do this in a 
methodologically sound way, I have to restrict myself to the classical case of commuting 
observables/questions. This is the scenario where the framework of quantum theory reduces to 
a classical, Boolean framework. Secondly, mainly based on the commuting case, I will 
propose a new solution to unify the analysis of questions and answers based on the operator 
formalism of quantum theory. I will demonstrate that this analysis reduces to a decorated 

                                                 
3 If you do not like the examples with ‘open’ and ‘closed’ because you feel the relevant constructions are not 
really semantically equivalent, you can construct similar examples using ‘even’ and ‘odd’. 
4 Another point is that the partition theory cannot analyze the difference between “Is the door open?” and “Is the 
door open or not?” Both questions are analyzed by assuming the same partition. However, in the first case a 
possible answer could be ‘no’, but not in the second. Of course, partition semantics could claim a pragmatic 
approach for handling this problem. However, I do not see how this could work in a systematic way without 
arbitrary assumptions. 
5 The construction of such examples is very common in literature which interprets the famous EPR thought 
experiment (cf. Einstein et al. 1935).  
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partition theory of questions if question order effects are excluded. This solution bears a close 
resemblance to the JH theory. However, there are also some important differences, and I will 
demonstrate how several shortcomings of the JH approach can be overcome by using the 
decorated partition theory derived from the operator formalism known from quantum theory. 
The third aim is to give up the feature of order-independence (commutativity) of 
questions/observables and to develop a framework which describes the different kinds of 
order effects found in attitude questions. The theory is applied to attitude questions in the 
context of opinion forming as investigated in survey research and personality psychology. 
 The organization of this paper is as follows. In the next section, I give a concise 
introduction to question semantics as developed in the JH approach. Section 3 introduces the 
basic orthoalgebraic framework as it has been used in modern quantum theory. It further 
gives a concise introduction into the basic elements of linear algebra which are indispensable 
for understanding this paper. In Section 4, I develop the orthoalgebraic semantics for 
questions and answers. The model deviates in some respects from the question semantics 
treated in Section 3; both the differences and the strict similarities are discussed. A 
comparison with alternative approaches is made in Section 5. Further, I will point out the 
close similarity between the so-called structured meaning approach and the present theory of 
decorated partitions. Section 6 extends the approach to include attitude questions and 
describing question order effects. Section 7, finally, draws some general conclusions. 

2. The Jäger/Hulstijn Approach to Question Semantics 
Many recent analyses of the meaning of questions start with three assumptions: (i) to 
understand a question is to understand what counts as an answer to that question; (ii) an 
answer to a question is an assertion or a statement; (iii) an assertion is identical with its 
propositional content (cf. Groenendijk and Stokhof 1997, p. 1066). Different approaches that 
fit into this scheme are (a) Hamblin (1973) who identifies a question with the set of 
propositional contents of its possible answers, (b) Karttunen (1977) for whom it is the smaller 
set of its true answers, and (c) the GS partition theory (Groenendijk and Stokhof 1984, 1997) 
which defines the meaning of a question as the set of its complete answers. Krifka (2001) 
categorises these theories under the label proposition set approach and contrasts it with the 
so-called structured meaning approach (Loeser 1968, Tichy 1978, Hausser 1983, von 
Stechow 1990).6 In the latter, the answers to wh-questions are identified with the senses of 
noun phrases rather than of sentences. Accordingly, the meanings of questions are constructed 
as functions that yield a proposition when applied to the semantic value of the answer (see 
Section 5 for more discussion).   
  Question semantics is a version of update semantics which takes into account that 
sentences do not only provide data, but also raise issues. In the GS theory these two tasks are 
strictly divided over two syntactic categories: declarative sentences provide data and 
interrogative sentences raise issues. This strategy has its limitations. For instance, it does not 
allow us to represent conditional questions.7 Recent developments of question semantics 
deviate from the classical picture in different ways. Some writers claim it is sufficient to 
modify classical partition theory in order to adapt it for the purposes of conditional questions 
                                                 
6 Besides the proposition set theory and the structured meaning approach there are other approaches that fit into 
the basic scheme, for instance Nelken’s and Francez’ bilattice approach to the semantics of questions (Nelken 
and Francez 1999, 2000, 2002) or Wiśniewski’s interrogative semantics based on erotetic inferences 
(Wiśniewski 1995).  For space reasons we cannot discuss these approaches in the present paper which focuses on 
discussing variants of the partition-theoretic models and their relationship to the treatment of observables in 
quantum mechanics. 
7 There are two other potential shortcomings, but discussing them goes beyond the scope of the present paper: (i) 
a proper treatment of hybrid expressions such as disjunctions which act as questions and assertions; (ii) the 
account for certain typological facts that demand a unification of question and declarative semantics (cf. 
Groenendijk 2008). 
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(Jäger 1996, Hulstijn 1997). Others claim classical partition semantics has to be given up for 
the same purpose (Velissaratou 2000, Groenendijk 2007, Groenendijk and Roelofsen 2010).  
  Obviously, the simplest way to unify questions and answers is to adapt partition semantics 
by saying that not the whole domain of possible worlds has to be partitioned but only a 
subpart of it. A proposition then can be seen as partitioning the set of all worlds that make the 
proposition true into a partition consisting just of one element: the set of worlds that make the 
proposition true. A conditional question then partitions the set of all worlds where the 
antecedent of the conditional is true.  As we will see immediately, such a version conforms to 
the JH approach. Surprisingly, this is the variant of partition theory that most naturally results 
from the orthoalgebraic approach as used in quantum theory. 
 Let us introduce the language of the formal setting first. Consider the logical query 
language QL to be the language of propositional logic L, extended with a question operator 
“?” and a (non-standard) conditional operator “”. Formally, QL can be defined as the 
smallest set containing L and satisfying the following two clauses:  
 
(5) a.  if   QL then ?  QL 

b. if ,   QL then ()  QL, ()  QL, and  ()  QL 
 
Following the JH approach (Jäger 1996, Hulstijn 1997) we can formulate the following 
semantic update clauses where W is a set of possible worlds,  is a classical interpretation 
function (assigning subsets of W to the atomic propositional symbols), and  is an information 
state modeled by an equivalence relation over the logical space,   W2. What is defined in 

this recursive way is the information change potential «» of any expression  of QL. It is a 
function from information states to information states. 
 

(6) a. «p» = {(u,v)  W2: u(p) and v(p)} 

b. «» =  {(u,v)  W2: (u,u) «» and (v,v) «»} 

c. «» = «»«» 

d. «?» = {(u,v)  : (u,u)  «» iff (v,v)  «»} 
e.  «» = {(u,v)  «?»: if (u,v)  «» then (u,v)  «»«»} 

 
For atomic formulas p, the first clause expresses the elimination of all possibilities 
incompatible with p. Negation is modelled in (6b) by set complement. The use of the 
intersection operator in the definition makes sure that negation is a so-called declarative 
update (cf. Hulstijn 1997). In (6c) conjunction is modeled by function composition on updates 
leading to a sequential notion of conjunction. The definition (6d) defines question by 
equivalent relations where two worlds are considered equivalent if they give the same answer 
to question ?. 
 In the JH framework, the standard definition for  is used:   (). In order to 
model conditional questions the standard implication   () cannot be used. The 
reason is that the clause for negation is declarative, i.e. no structure can be induced under the 
scope of negation. But conditional questions give an interesting structure and for this reason 
JH have proposed an alternative definition for conditionals , as shown in definition (6e). In 

this definition, the restriction (u,v)  «?» is required. That means the antecedent of the 
conditional must become an issue. Leaving out this restriction it would no longer be 
guaranteed that the result is an equivalence relation (cf. Hulstijn 1997, footnote 10).  
 By way of illustration, let us consider a fragment with two atoms p and q. Identifying 
possible worlds with functions assigning the truth values 1 (true) and 0 (false) to the atoms, 
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we get four possible worlds abbreviated by 10, 11, 01, 00. Interpreting atoms by sets of 
worlds in which the atoms are true gives the obvious assignments (p) = {10, 11} and (q) = 
{01, 11}.  Figure 1 shows the meaning of p in question semantics assuming an initial 
information state  = W2 (representing a logically empty state, a tautology if you want). 
Consequently, we are concerned with a single equivalence class that captures the logical 
space of p (set of worlds that make p true).   
 
 

 
Figure 1: Picture of meaning p (assertion) in question semantics 

 
Figure 2 pictures the meaning of ?p in question semantics. It is constituted by two equivalence 
classes which partition the space W of possible worlds. 
 
 

 
 

Figure 2: Picture of meaning ?p in question semantics 
 

The meaning of the conditional interrogative  p?q is pictured in Figure 3. It is the partition 
of the logical space consisting of three blocks. The blocks of the partition correspond to the 
propositions expressed by pq, pq and p.  
 
 

 
 

Figure 3: Picture of meaning p?q in question semantics 
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There is a controversy about this result, mainly concentrated on examples of the following 
kind (Velissaratou 2000): 
 
(7) A: If Mary reads this book, will she recommend it to Peter? 

B: Mary does not read this book.  
 
According to the JH approach the answer given by (7B) should count as a (complete) answer, 
having the same status as the two other possible answers, namely “yes, he will” and “no, he 
won’t”.8 However, there is a problem with this analysis. As pointed out by Isaacs and Rawlins 
(2008), responses like (7B) are not answers in the technical sense; i.e., they do not resolve the 
issue raised by the question. Instead, they indicate a species of presupposition failure. To say 
it in another way, the question in (7A) is about whether Mary will recommend the book to 
Peter. Denying the antecedent addresses the ground on which the question stands, not the 
question itself. The partition semantics taken by JH fails to give any indication of the different 
status of the three blocks of the partition. There are further problems with this approach, to 
mention only one: p?p comes out as semantically equivalent with ?p, which is rather 
counter-intuitive.  
 In conclusion, we have seen some conceptual and empirical problems of the JH approach. 
The conceptual flaws are mainly related to the need of two different definitions of 
conditionals, one relating to the usual material implication, the other to the interrogative 
conditional. The empirical problems are due to the uniformity of the classical partition 
semantics, which gives all blocks of the partition the same status.  

3. Basic Concepts of Linear Algebra 
In this chapter, I will give a concise introduction to the parts of linear algebra that are required 
to understand the orthoalgebraic approach to semantics. At its centre we find the concept of a 
Hilbert space ℋ, i.e. a vector space upon which an inner product (= scalar product) is defined 
and which makes use of complex numbers instead of real ones. Further, we consider linear 
operators defined on ℋ, and we discuss the spectral decomposition of a particular class of 
linear operators. The decomposition takes pace in terms of so-called projection operators 
which project certain subspaces of ℋ. The algebraic structure underlying these projection 
operators is an orthoalgebra. In orthoalgebraic semantics, propositions are modeled by 
projection operators (or, equivalently, subspaces of ℋ).  

3.1 Complex Numbers and Quaternions 
Complex numbers can be conceptualized as pairs of real numbers. The first part of a complex 
number is called its real part; the second part is called its imaginary part. Complex numbers 
are usually written in the form z = x+yi, with real numbers x and y. The first part of this 
decomposition is called the real part of z, the latter part is called the imaginary part of z. For 
calculating with complex numbers the same rules can be used as for calculating with real 
numbers, respecting the assumption i2 = −1. Complex numbers were introduced to allow for 
solutions of certain equations, such as z2+1 = 0, that have no real solution (since the square of 
z is 0 or positive, so z2 + 1 cannot be zero). It is easy to see that the equation has two complex 
solutions: z = ± i. Generalizing the result, in 1799 Gauss published the first proof that an nth 
degree equation (which can be written as zn + a1z

n–1 + ... + an–2z
2 + an–1z + an = 0) has n roots 

each of the form z = x+yi, for some real numbers x and y.  
 Through the Euler formula, a complex number z = x+yi may be written in the form 
 

                                                 
8 This possibility was also suggested by Groenendijk and Stokhof 1997, fn 29. 
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(8) z = |z| (cos  + i sin ) =  |z| ei, where |z| = 22 yx   and )(tan 1
x
y . 

 
Figure 4 shows how complex numbers can be pictured in a two-dimensional plane by the use 
of the Euler formula (8). 

 
 

Figure 4: Geometric representation of complex numbers in a two-dimensional plane  
 
Each complex number z = x+yi has a complex conjugate, written z* and defined by z* = xyi. 
The product z z* equals |z|2  = x2 + y2. 

3.2 Vector spaces 
I assume that the reader already has an intuitive idea about vectors. If not, look at a concrete 
example of a two-dimensional vector space consisting of all points in a plane represented by 
all ordered pairs (x,y) of real numbers (you can visualize a vector by an arrow directed from 
the origin (0,0) to the point (x,y) in our Cartesian coordinate system. Simple examples for 
vectors are physical forces acting on mass points. Another class of examples is the oscillation 
of mass points described by functions of time, such as h(t) = acos(2ft), where the parameter 
a is the amplitude of the oscillation and f its frequency. 
 Intuitively, two physical forces can be superposed and the same idea of superposition 
applies for two physical oscillations. Formally, the crucial operation is vector addition. 
Another operation for vectors is scalar multiplication. Applying scalar multiplication changes 
the length of the vector but typically not its direction (only if the scalar is negative, the 
opposite direction is taken). In the case of oscillations, scalar multiplication does not account 
for a change of the amplitude only; it can also change the phase of the oscillation if the scalar 
is a complex number. For example, using the Euler formula (8), we can describe an oscillation 
with amplitude a and frequency f  by the complex function aei2ft. Its real part then gives us 
the ordinary description h(t) = acos(2ft). Now let us multiply the complex function with the 
complex number i. Because of the equivalence i = ei/2 (Euler formula), we get the function 
aei2f (t+1/4f). This function describes the original oscillation phase shifted by ¼ of its period. 
Generally, by multiplying with a complex number ei , we can describe a phase shift of /2f.  
 Vector spaces (denoted by U, V, …) are sets of vectors that are closed under the two 
operations of vector addition and scalar multiplication. In other words, if all the vectors ui (i= 
1, …, n) are elements of a vector space, then each linear combination of it, i.e. each sum x1u1 
+ x2u2 + … + xnun, is also an element of the vector space. Importantly, the two operations 
addition and scalar multiplication are subject to some simple conditions. We will not explain 
all the relevant conditions in detail because of space limitations. The addition operation has to 
satisfy commutativity, associativity, the existence of a null-element and of an additive inverse. 

 z = x + y i 

  
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Further, with regard to scalar multiplication the distributive properties are assumed and we 
have the multiplicative identity 1u = u.9  Vector spaces based on scalar multiplication with 
real numbers R are called real vector spaces; vector spaces based on scalar multiplication 
with complex numbers C are called complex vector spaces. 
 A subset of a vector space U is called a subspace of U if it is a vector space (i.e. closed 
under addition and scalar multiplication). Let U1 and U2 be two subspaces of U, then the sum 
of the two vector spaces, written U1 + U2 , is the set of all possible sums of elements of U1 
and U2. The sum of two vector spaces is a vector space again. We will say that the sum U1 + 
U2 is a direct sum of the two subspaces U1 and U2 if and only if each element of the sum can 
be written uniquely as a sum u1 + u2 where u1U1 and u2U2. It can be proven (e.g. Axler 
1996) that a sum U1 + U2 is a direct sum iff U1  U2 = {0}. The linear hull of a list of vectors 
(u1, u2 ,…, un) in U is defined as the set of all linear combinations of these vectors, denoted 
LH(u1, u2 ,…, un). A vector space is called finitely dimensional if it is the linear hull of some 
finite list of vectors. 
 An important idea is the linear independence of a set of vectors. A set of vectors is called 
linearly independent if none of its elements is a linear combination of the others. Otherwise it 
is called linearly dependent. A basis of a vector space U is a list of linearly independent 
vectors in U iff U is the linear hull of these vectors. If there are several bases of a vector 
space, it can be proven that the number of the vectors is the same in each base. This number is 
called the dimension of the vector space. Observe that dim(U1 + U2) = dim(U1) + dim(U2)  
dim(U1  U2). This result allows the following conclusion: the dimension of the direct sum of 
two vector spaces is the sum of the dimensions of the two spaces. 
 Finally, we will consider the simple example of a two-dimensional, real vector space R2 = 
{(x1,x2): x1R and x2R}. Two subspaces of R2 are  R1

1 = {(x1,0): x1R} and R1
1 = {(0,x2): 

x2R}. Now we can write R2 =  R1
1 + R

1
2 . This sum is a direct sum since R1

1  R
1

2 = {(0,0)}. 
The vector space R2 is the linear hull of the two vectors (1,0) and (0,1). An alternate base 
consists of the two vectors (1,0) and (1,1). The two vectors (1,0) and (0,1) are called 
orthogonal, but the two vectors (1,0) and (1,1) are not orthogonal. The notion of 
orthogonality can be made precise in terms of scalar product, a notion we introduce now. 

3.3. Scalar Product 
Scalar multiplication and scalar product are different operations. The former is an operation 
between (real or complex) numbers and vectors resulting in vectors; the latter is an operation 
between two vectors resulting in a (real or complex) number expressing the similarity of the 
two vectors. The scalar product of two vectors u, v in a given vector space is written in the 
form  uv.10  
 If we take the example of the real vector space R2, the scalar product of two vectors u = 
(x1,x2) and v = (y1,y2) can be written as uv = x1y2 + x1y2. The length of the vector u, also called 

the norm of u, results as 2
2

2
1

2 xxuu  .11 We can also write the scalar product of u 

and v in the form uv = ||u|| ||v|| cos , where  is the angle between u and v. Using this 
example, we can see some properties of the scalar product: (a) positivity: uu   0 for all uU; 

                                                 
9 There are many good textbooks which introduce all the mathematical details. I refer the reader to Axler (1996) 
or Strang (2003). Advanced readers could likewise consider introductions into quantum information science, e.g. 
Vedral (2006). 
10 The dot symbol  '' is used both for the scalar product and scalar multiplication. This should not be confusing 
because the context always makes clear what is meant. Further, note that the dot symbol is usually omitted for 
scalar multiplication but not for the scalar product. 
11 Generally, including the complex case the definition is *uuu   
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(b) definiteness: uu = 0 iff u = 0, (c) additivity: (u1+u2)u = u1u +u2u, (d) homogeneity: 
(au)v = a(uv) with aR, (e) symmetry: uv = vu.  
 Usually, the scalar product is introduced in an axiomatic way. In this formulation exactly 
the axioms (a)-(d) are assumed. The symmetry property (e) is replaced by the axiom of 
conjugate symmetry: uv = (vu)* (taking the case of complex numbers into account). 
Generally, two (non-zero) vectors are called orthogonal if their scalar product is zero.  A list 
of vectors is called orthogonal if the vectors in the list are pairwise orthogonal; the list is 
called orthonormal if, in addition, all the vectors of the list have the unit norm 1. Orthogonal 
and orthonormal lists of vectors are always linearly independent and form a base of a vector 
space. 
 Finite vector spaces augmented with a scalar product are called (finite) Hilbert spaces, 
usually designated by ℋ.  Hilbert spaces can be assumed to be hulled by a finite orthonormal 
base S = (u1, u2, … , un) and each vector u can be represented by a linear combination  x1u1 + 
x2u2 + … + xnun of the base vectors. The list (x1, x2, …, xn) of the corresponding (complex) 
numbers in the linear combination representing u is called its component vector (relative to 
base S). 
 Let us assume that U is a subspace of a Hilbert space ℋ. With the help of the scalar 
product the orthocomplement of U – written U – can be defined as the set of vectors that are 
orthogonal to each vector in U: 
 
(9) U = {uℋ: uv = 0 for any vU} 
 
It is not difficult to prove that the orthocomplement is a vector space again and that ℋ is the 
direct sum of U and U: ℋ = U + U. In Section 3.5 we will consider the algebra that arises 
from considering the three basic operations on vector spaces: intersection, sum, and 
orthocomplement. 

3.4 Linear operators 
Linear algebra is basically the study of linear operators on finite Hilbert spaces ℋ. A linear 
operator is a function a that maps ℋ onto itself and which has the following properties: (a) 
additivity: a(u+v) = au+av for all u,vℋ, (b) homogeneity: a(xu) = x(au) for all uℋ and all 
(real/complex) numbers x. With regard to an orthonormal base S = (u1, u2, …, un) of a finite 
Hilbert space ℋ we can assign a matrix to each linear operator. This matrix determines the 
linear operator uniquely. It is defined as follows: 
 
(10) aij =  ui(auj) 
 
Taking a vector u with its components (x1, x2, …, xn) we can determine the components (y1, y2, 
…, yn) of the vector v resulting from applying a to u (v = au) by matrix multiplication: 
 
(11) jj iji xy  a . 

 
In the following, we will concentrate on a special class of linear operators called normal 
operators. A linear operator a in ℋ is called normal iff it satisfies the following condition: 
 
(12) a*a = aa* 
 
Hereby the adjoint of a, denoted a*, is defined by the following clause:  



 11

 
(13) (av)u = v(a*u) for all vectors u, v in ℋ.12 
 
Linear operators can be characterized by their invariant subspaces. A vector space U 
(subspace of ℋ) is called invariant under the transformation a iff for any uU it holds that au 
 U. An example of an invariant subspace of a linear operator a is the kernel or null space of 
a. It is defined as the set of vectors that project to zero; i.e. null a = {uℋ: au = 0}. Using 

matrices to represent linear operators I will consider the following example: 









42

21
a . In 

this case, the kernel is spanned by the vector 







1

2
. This is easily checked by the following 

calculation: 
























0

0

1

2

42

21
. Hence, we get null a = 

















Cxx :

1

2
.  

 Besides the kernel of an operator, there is another important class of invariant subspaces. 
These are the subspaces hulled by all eigenvectors of a linear operator a with a fixed 
eigenvalue . These subspaces are called eigenspaces of a. The eigenspace of a for an 
eigenvalue  is defined as the set of all vectors u satisfying the eigenvalue equation: 
 
(14) au = u 
 
The eigenspace of a for the eigenvalue  can be expressed as the kernel of the operator aI, 
where I is the identity operator in ℋ,  Iu = u for all u in ℋ. 
 Next we can introduce the central idea of linear algebra: spectral decomposition. Roughly, 
the idea is to decompose the operator into a system of invariant subspaces of the operator. The 
invariant subspaces are the eigenspaces of the operator considering the whole spectrum of its 
eigenvalues. To express the idea in a precise manner we have to introduce the concept of a 
projection operator. Intuitively, a projection operator in ℋ projects all vectors of ℋ onto one 
of ℋ’s subspaces, say U. The direct sum ℋ=U+U tells us that each vector v of ℋ can be 
uniquely represented as v = u+u’ where uU and u’U. This leads us to the following 
definition of a projection operator aU (projecting each vector of ℋ into the U): 
  
(15) aU(v) = u, where v = u+u’ and uU, u’U 
 
Figure 5 gives a geometric illustration of a projection operator projecting a three-dimensional 
real Hilbert space into a two-dimensional subspace.  

                                                 
12 In matrix representation, the adjoint is the conjugate transposed matrix; i.e. (a*)ij = aji*. 
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Figure 5: Illustration of a projection operator projecting vR3 into uR2 
 
Projection operators can be characterized by the property that their eigenvalues are 1 or 0. An 
equivalent definition states that they are idempotent, i.e. aa=a.   
 By the use of the mathematics developed so far it can be proven that each normal operator 
has a spectral decomposition. That is, any normal operator a can be written in the following 
form:  
 
(16) a = i i ai, where ai denotes a projection operator that projects any vector of ℋ into the 

eigenspace of a with eigenvalue i. The projection operators ai have distinct eigen-
values, i.e. if ij then ij. 

 
In the spectral decomposition of a normal operator a, the projection operators ai are weighted 
with their eigenvalues i. The operators ai project the vector space ℋ into the corresponding 
eigenspaces with eigenvalues i. These eigenspaces are pairwise orthogonal and their (direct) 
sum gives the full vector space ℋ.  Another way of looking at the spectral decomposition (16) 
is by considering an orthonormal system of eigenvectors of a. This system hulls the whole 
vector space ℋ. Obviously, this system is partitioned into subsystems of base vectors 
corresponding to their eigenvalues. In other words, the spectral decomposition (16) can be 
seen as generating a decorated partition of the system of eigenvectors of a. 
 In quantum mechanics, physical observables are represented by linear operators in a 
Hilbert space ℋ exhibiting real eigenvalues.  Such operators with real eigenvalues are called 
Hermitian operators. They always satisfy the condition a*=a. Projection operators are always 
Hermitian. They represent observables that detect whether a certain vector projects into a 
specified subspace (eigenvalue 1) or not (eigenvalue 0). Using the spectral theorem, each 
Hermitian operator a can be decomposed into a sum of projection operators weighted by real 
numbers i (their eigenvalues): a = i i ai. 
 Next, I have to explain the idea of a physical measurement, where the observable that is 
measured is represented by a Hermitian operator a. Assume that the considered physical 
system is in a certain state uℋ. There are two possibilities now. First, the state u is an 
eigenstate of a, say with eigenvalue i. Then the measurement results in this eigenvalue and 
the state after the measurement is not changed (i.e. it is u again). The second possibility is that 
the state u is not an eigenstate of a. In this case, quantum mechanics assumes that the act of 
measuring changes this state into another state which is always an element of one of the 
eigenspaces of a. It is decided by chance which eigenspace it is. There is no way to formulate 
a deterministic mechanism for this decision. Hence, indeterminism is an essential component 
of quantum mechanics. The only thing that can be predicted is the probability of finding the 

v

u

u'

U
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output state in a certain eigenspace of a, say the space described by the projection operator ai. 
There is a simple rule to calculate this probability (called the Born rule): square the length of 
the projection aiu, i.e. calculate ||aiu||2; the result gives the probability that the state u collapses 
in the eigenspace described by ai. In other words, it gives the probability that the eigenvalue i 
is measured.  
 To repeat the deep insight from quantum theory: the act of measuring can change the state 
of the system. Only if the initial state is an eigenstate of the observable that is measured the 
final state is not changed by the measurement. Generally, a measurement can be seen as a 
question addressed to nature. The act of questioning can change the state of the system. This 
is not really surprising when considering modern versions of update semantics (such as the JH 
question semantics considered in Section 2). What really is puzzling, however, is the kind of 
ordering effects we predict for attitude questions. This phenomenon will be discussed in 
Section 6. In Section 4 we will consider the “classical case” of non-commuting 
observables/questions. Exploiting the analogy between observables in quantum theory and 
questions in update semantics, I will develop a new version of question semantics. In 
particular, I will show that most shortcomings of the JH approach can be resolved by using 
the underlying idea of decorated partitions. 

3.5 Pauli (Spin) Matrices 
In order to illustrate the concepts introduced so far, some simple examples are useful. Let us 
first consider the real vector space R2.  I consider two operators x and z

13 which are given 
by the following matrices: 
 

(17) 









01

10
x , 











10

01
z  

 
It is easy to check that the operator z has two orthogonal eigenvectors: the eigenvector z+ = 









0

1
 with eigenvalue +1 and the eigenvector z = 








1

0
 with eigenvalue 1. The operator x, in 

contrast, has the following two (normalized) eigenvectors: x+ = 







1

1
2

1  with eigenvalue +1 and 

x = 







1

1
2

1  with eigenvalue -1. It is a simple exercise to verify the following spectral 

decompositions of the operators x and z, respectively: 
 

(18) a. 






























2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

01

10
x  

 

b.   




























10

00

00

01

10

01
z  

 
Figure 6 presents the corresponding geometric representations of the eigenstates of the 
operators x and z. It is convenient to symbolize the two projection operators appearing in 
the decomposition of z  by 1 and 0, where the operator 1 projects into the eigenvector z+ of z  

                                                 
13 The term spin matrices and the special names x and z will be explained later when we consider the complex 
Hilbert space. 
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and the projection operator 0 projects into the eigenvector z.14 The operator 1 is different 
from the identity operator I introduced earlier. It is easy to check that I = 0 + 1. Note that z =  
1  0. Further, note that 0 is different from the zero operator  which maps each state of ℋ to 
zero (u = 0). 
 
 
 
 
 
 
 
 
 
 
                        

 
 
Figure 6: Visual representation of the eigenstates of the operators x (right) and z 
(left). The vector u is projected into the one-dimensional eigenspaces hulled by 
the vectors x+ (left) and z+ (right), respectively. The projections result in the 
vectors ux+ and uz+. The squares of the length of the vectors ux+ and uz+ are the 
probabilities of the yes-answers to the ‘questions’ x and z, respectively.   

 
 

Now consider the state 









1

0
u . This state is an eigenstate of the operator z with eigenvalue 

1. If measuring the observable z in this state a certain value results:  1 (‘no’). During the 
act of measurement the state u is not changed since it is an eigenstate of the observable under 
discussion. Let us consider next a second measurement performed in state u, this time 
measuring the observable x. Since the two eigenvectors of x are distinct from the state u of 
the system, we get two different answers this time: +1 (‘yes’) and 1 (‘no’). Both answers are 
uncertain; their probability is ½ in both cases (reflecting maximal uncertainty). The state after 
the measurement of x is different from the state before: it represents a mixture of the two 
eigenstates of x, namely x and x+, both weighted with the same probability ½.  
 The examples can be used to illustrate an important issue of quantum mechanics: 
preceding measurements can influence the actual state of the system and the results of the 
actual measurement when the operators representing the observables do not commute (xz  
zx).  When first measuring z in the state u, we get a definite outcome and the state of the 
system does not change. When the observable x is measured before measuring z, we get a 
uncertain result for the measurement of z since the first measurement has destroyed the state 
u and transformed it into a mixed state. Section 6 will illustrate similar order phenomena in 
the domain of natural language semantics, especially in the context of attitude questions 
investigated in survey research and personality psychology.  
 It is a simple exercise to prove that each Hermitian operator of the real vector space R2 
can be written as a linear combination of x, z, and the identity matrix I. In case of the 
complex vector space C2, we have to consider a third operator represented by the matrix y: 

                                                 
14 In matrix representation, we have 1 = 









00

01  and 0 = 








10

00 . 

x+ 
ux+

u 

x

uz+     u

z

z+ 
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(19) 










0

0

i

i
y  

  

The operator y has the following two (normalized) eigenvectors: y+ = 







 i

1
2

1  with 

eigenvalue +1 and y = 







i

1
2

1  with eigenvalue 1. The three operators x, y, and z are 

called the Pauli matrices (after the Austrian physicist Wolfgang Pauli). These operators are 
usually applied describing the spin of a spin-½ particles (such as electrons, neutrons and 
protons). Alternatively, they can also be used to describe the polarization of photons. The 
eigenstates of x and z describe states of linearly polarized photons whereas the eigenstates 
of y refer to states of circularly polarized photons (where the direction of polarization is not 
fixed but circulating around the axis of wave travelling).  

3.6 Qubits 
In classical information theory the states of a system are described in terms of two discrete 
units, say {0,1}. A decision between these two states requires one bit of information if the 
states have the same probability. In quantum computing, the qubit is considered as the 
elementary unit of information  deciding on a vector in a two-dimensional complex vector 
space.  Figure 7 depicts the situation. The left-hand side represents an (arbitrary) unit vector u 
in terms of an azimuthal angle  in case of real vector spaces. In the complex case, an 
additional parameter is required describing the phase shift between the two components of the 
state vector. This parameter is called the phase angle .  
 
 

   Real Vector Space                Complex Vector Space  
 
 
 
  
 
  
 
 
 
 
 
 
 
 

 
 
 
 
 
Figure 7: a) Realizing a qubit by selecting a state in a two-dimensional real vector 
space; b) realizing a qubit by selecting a state in a two-dimensional complex 
vector space (Hilbert space). The latter figure is also called Bloch sphere.  




















1

0
20

1
2

 sincosu 





















1

0
20

1
2

22
ii

eeu  sincos

 

u 

X 

Z 

u 
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As an exercise, consider the state u as depicted in Figure 7. What is the probability for the +1 
(‘yes’) answer when measuring the observable z?  Solution: the probability is cos2(/2) for 
real and complex vector spaces. The probability for the +1 (‘yes’) answer, when measuring 
the observable x (measuring the x-direction), is ½(1+sin()) for real vector spaces and 
½(1+sin()cos()) for complex vector spaces.15 Hence, in the complex case, the phase factor 
shrinks the probability.  

3.7 The Application Function 
Consider the spectral decomposition defined in formula (16). For the following it is useful to 
have a function that selects exactly the part of the operator with a particular eigenvalue – let 
us call this function application. It is defined as follows: 
 
(20) @(a, i) = ai, where ai is the corresponding projection operator in the spectral 

decomposition (16) 
 
The application device @ will be a useful instrument for formalizing the idea of a possible 
(full) answer to a question in Sections 4 and 5.  

3.8 Quaternions 
A useful extension of the present framework is the introduction of quaternions. Quaternions 
are a generalization of complex numbers. The standard definition regards every quaternion as 
a unique and real linear combination of the basis quaternions 1, i, j, and k: x = x0 + x1 i + x2 j + 
x3 k, with the set of equations i2 = j2 = k2 = ijk = –1. In principle, quaternions can be used like 
(complex) numbers. However, there is one important difference: the order of two quaternions 
can matter when multiplying them. In particular, we will use the quaternions y and n to 
represent the answers ‘yes’ and ‘no’, respectively (instead of numbers +1, 1). The point 
becomes visible in Section 4 when we are concerned with the conjunction of questions (‘do 
you like beer and do you like wine’). In such cases we need the possibility for representing 
composed answers (such as ‘yes’ to the first part and ‘no’ to the second part of the question). 
The mathematical framework from quantum physics has only numbers available to represent 
answers. This is not always very practical for applications of natural language semantics. As a 
compromise, I suggest the use of quaternions, which allows to distinguish between composed 
answers such as y n and n  y. Quaternions make sure that these composed answers are 
different since the commutative law y n = n  y is disobeyed.  

3.8 Orthomodularity and Inference 
Generally speaking, an orthomodular lattice (Rédei 2009) is the structure underlying 
propositions in a physical theory based on a Hilbert lattice. A specific class of orthomodular 

lattices is the class of Hilbert lattices. A Hilbert lattice with lattice operations , , ⊥ is the 

set of all projections of a complex, possibly infinitely dimensional Hilbert space ℋ. Note that 

                                                 
15 There are two equivalent ways of calculating the result. First, we can use the projector for the ‘yes’-answer, 

i.e. the matrix 1=








00

01 , and multiply this matrix with the vector u presented in Figure 7. Next we calculate the 

square of the length of the resulting vector. The second possibility is to calculate the scalar product between u 

and z+ = 








0

1  and calculate the square of the resulting amount. The details of these calculations are left for the 

reader. 
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the lattice operations , , and ⊥ operate on projection operators. They correspond to the set-

theoretical intersection, sum and orthocomplement operating on subspaces of ℋ.16  An 
orthomodular lattice is similar to a Boolean algebra but more general. Whereas a Boolean 
algebra satisfies distributivity (with regard to union and intersection), an ortho-modular lattice 
does not necessarily do so; it satisfies the axiom of orthomodularity, instead.17 

The notion of inference can be defined in the following way, where a and b are projection 
operators:  
 
(21) a |= b  iff ab = a  
 
It is exactly the relation |= which defines the lattice-theoretic properties of the orthomodular 
lattice. 
 For the following it is important to take the ‘classical case’ into account, where all the 
considered projection operators commute, i.e. are order-independent (ab = ba). In this case 
we have the following facts:  
 
(22) a.  ab = ab 

   b. ab = a+bab 
  c. a  = Ia  (where I is the identity operator introduced earlier) 

  
In the last subsection, I introduced the two commuting projection operators 0 and 1, which 
realize the projections of the two base states z+ and z.  Further, we used the notation I for the 
identity operator and  for the zero-operator. All the operators 0, 1, I and  commute with 
each other and they can be seen as realizing a classical bit-system (as a subpart of the more 
general qubit-system).  

3.9 Tensor Product 
In quantum theory, complex systems are built by using the tensor product. Assume we have 
an orthonormal base S = (u1, u2, … , un) of our Hilbert space ℋ of dimension n. By taking the 
tensor product, two vectors u = i xiui and v = j yjuj can be combined to form a joint state:   
 
(23) uv = ij xi yj uiuj. 
 
It is stipulated that the vectors uiuj form an orthonormal base of an n2-dimensional Hilbert 
space ℋ2. The notion of tensor product can straightforwardly be extended to linear operators. 

                                                 
16 More precisely, we can express this by introducing the range of a projector: ||a|| = {uℋ: au = u}. Then the 
lattice operations on the space of projection operators are defined by the corresponding operations on vector 

(sub)spaces: ||ab|| = ||a||  ||b||, ||ab|| = ||a|| + ||b||, and ||a⊥|| = ||a||⊥. 
17 I do not list the relevant axioms underlying an orthomodular lattice here. For a detailed exposition, the 
interested reader is referred to Rédei (2009). It should be noted, however, that the Hilbert lattice is not only non-
distributive but it is also non-modular if the dimension of the Hilbert space is infinite. If the dimension is finite it 
is modular. The concept of an orthoalgebra is closely related to orthomodularity (Rédei 2009). Any 
orthomodular lattice determines an orthoalgebra. However, not every orthoalgebra is an orthomodular lattice. In 
this paper, we use the term ‘orthoalgebraic approach’ as a cover term for studying the algebraic properties of all 
projections of (finite and infinite) dimensional Hilbert spaces. 

Another interesting point relates to the fact that distributivity is not the only property that distinguishes 
Boolean algebra from an orthomodular lattice. The existence of a cloning (or copying) operation is another 
property. It has been proven that an orthoalgebra admits cloning operation if and only if it is a Boolean algebra 
(Miyadera and Imai 2009). That is, only classical theory admits the cloning of states. 
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We will write ab for the tensor product of the two operators a and b. It can be defined by 
stating the following condition: 
 
(24) ab(uv) = aubu, for all vectors u,vℋ. 
 
If the context excludes misunderstandings, it is convenient to leave out the symbol ‘’. For 
example, we will write 011 instead of 011. In the classical case all projection operators 
that are built from linearly combining pure projections in a 2n-dimensional Hilbert space (such 
as adding elements of 000, 001, 010, … in case of a 3 qubits) commute with each other. 
Consequently, they realize a Boolean algebra.  

4. Orthoalgebraic Semantics 
In the last section, we have seen that each normal operator/observable a in a Hilbert space ℋ 
can be decomposed in pairwise orthogonal subspaces (described by projection operators) 
which are decorated by the corresponding eigenvalues of a. The sum of these subspaces gives 
the whole Hilbert space ℋ; hence we can speak of a decorated partition of ℋ. In this section, 
I will investigate the idea of decorated partitions further, and I will use this idea for 
developing a new version of question semantics. 
 We can exclude the kernel (null space) of an observable (i.e. the vector space 
corresponding to eigenvectors with eigenvalue zero) from the partition since it does not 
contribute to the sum of the spectral decomposition in (16). In this way, an observable a can 
effectively be represented by a decorated partition of the non-null part of the observable. 

4.1 The Query Language QL* and its Semantics 
We start from a standard query language QL*, which is built from a set of propositional 
variables p, q, r, …, with the help of negation , conjunction , disjunction , 
declarative ! and question ?. The semantics of this language is defined relatively to a 
Hilbert space ℋ (and the orthomodular lattice defined on it). For defining the semantics, we 
assume an assignment function  which assigns projection operators in ℋ to the propositional 
variables. Then the semantic values for the formulas of QL* are defined as follows: 
 

(25) a. «p» = (p) 

b. «» =  i i ai
  where «»  = i iai (the spectral decomposition of «») 

c. «» = «»«» 

d. «!»= (null «») 

e. «?» =  y«» + n«»  (‘y’, ‘n’ are quaternions for ‘yes’, ‘no’) 
 
Notice that the semantic value of  is a projection operator again if  is a projection 

operator (25b). In this case, we have «» = I  «». If  is a yes/no-question, then  turns 
the yes-answer into the no-answer and the no-answer into the yes-answer.  
 The semantic value of the conjunction is the composition of the corresponding operators, 
as defined in (25c). Using the result of (22a), this conforms to the intersection operation in 
case the order of the operators does not matter (commutativity). The general case of non-
commuting operators will be considered in Section 6. Note that the composition of two 
Hermitian operators is Hermitian again only if both operators commute. 
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 The semantic value of declarative ! as defined by (25d) is a projection operator that 

projects into the orthocomplement of the kernel of «».18 If  expresses a proposition, then 
the semantic value of ! is the same as the semantic value of  itself, namely a projection 
operator that projects into the corresponding subspace of ℋ. If   expresses a yes/no-question, 
then the semantic value of !  is a projection that projects into the whole Hilbert space ℋ. 
This tells us that the question raises an issue, but does not provide any information. 
 Equation (25e) gives the definition of the question operator (yes/no-questions). If  
expresses a proposition, then the question operator transforms this proposition into the 
corresponding yes/no-question. 
 Two further definitions are required: 
 
(26) a.  = () 

b.  = ()  
 
The first definition (26a) looks very classical. In fact, it corresponds to the classical Boolean 
operation of disjunction if  and  are declaratives. The implication defined in (26b) is the 
Sasaki implication well-known from quantum logic (cf. Dunn and Hardegree 2001). 
Interestingly, these definitions also apply if  and/or  are questions. This leads to surprising 
results, which will be discussed after the introduction of some basic semantic concepts.  

4.2 Truth and Probability 

A declarative formula  is semantically represented by a projection operator «».  A 

declarative  is considered ‘true’ in a situation u iff u is an eigenvector of «» with 
eigenvalues 1; formally: 
 

(27) u |   iff  «»u = u 
 
In Section 3.4  (Figure 6) we have introduced the Born rule which says that the probability of 
getting the value 1 (‘yes’) when measuring the projection operator a in state u is the square of 
the length of the vector au. In other words, ||au||2 is the probability that u collapses in the 
positive eigenspace of a when measuring it. If a is the semantic value of a declarative  (i.e. a 

= «»), then the squared length of «»u is the probability that  is true for state u. In the 
following, I will use a special notation for expressing the Born rule: 
 

(28) [[]]u  = ||«»u||2 
 
It is easy to prove that for declaratives  and states u  0, u |   iff  [[]]u = 1  and u |   iff  
[[]]u = 0. As an exercise the interested reader can check that [[]]u  = 1[[]]u and [[]]u 
= [[]]u + [[]]u  [[]]u , where  and  are declaratives. The latter rule holds for 

commuting operators only:  «»«» = «»«».   
 At this place a remark about sequences of declaratives and conjunctions of declaratives is 
in order. Standard conjunction in quantum logic (e.g. Rédei 2009) is always a symmetrical 
operation, i.e. the order of the two propositions that are conjoined does not matter. Sequences, 

                                                 
18 Note that we write ‘null a’ for the projection operator corresponding to the kernel of a, denoted by null a. The 
first expression refers to an operator; the latter expression refers to a vector space (the null space).  Both 
notations are closely related, of course. 
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in contrast, can be order-dependent in the general case. Hence, exactly in the ‘classical’ case 
of commuting observables, the notion of conjunction and the notion of sequence coincide.  
 One could think that a proper definition of a sequence of two observables is their 
composition. Unfortunately, this is not generally correct since the composition of two 
Hermitian operators is only Hermitian if the operators commute. There is a trick that is used 
in quantum theory to overcome this problem. The trick is to repeat the first operator at the end 
of the sequence. In this way, the system is forced into the eigenstates of the first operator. 
Using this trick, we can define the semantic value of the sequence (;) as follows: 
 

(29) «;» = «»«»«» 
 
Consequently, the probability of the proposition expressed by the sequence (;) in state u is 

given by the formula [[;]]u  = ||«»«»«»u||2. Recently, Niestegge (2008) has shown that 
this method is more than just a trick. His argument is that it makes complete sense to 
introduce a conditioned quantum probability by using sequences: 
 
(30) [[/]]u  =  [[;]]u / [[]]u . 
 
This formula resembles the classical definition of conditioned probability: P(/) = 
P()/P().  For more arguments that this method can usefully be applied for defining the 
semantics of sequences see the original literature and Blutner (2009). In Section 6, I will give 
an example of how to use these conditioned quantum probabilities.  

4.3 Span of an Operator 
For comparing the orthoalgebraic approach with classical approaches to questions and 
answers, I will introduce the notion of span. The span of a normal operation a is defined as 
the relation between the eigenstates of a that have the same (non-zero) eigenvalues: 
 
(31) span a = {(u, v): au = u and av = v for some 0} 
 
Obviously, the span of a normal operator is an equivalence relation. Now we consider the 
query language QL* with the interpretation as given in (25). Take an expression  interpreted 

as «». Instead of writing span «» for the span of the corresponding operator we will simply 
write span . For expressions that are interpreted by projection operators (declaratives) the 
span gives exactly the information that is provided by the truth conditions. Hence, we have 
the following facts for declaratives :  
 
(32) a. (u, v)  span  iff   u |  and v |   

b. u |  iff (u, u)  span . 
 
I will now consider the classical case in which all operators commute with each other.  If  
and  are declaratives, then the spans of , ?, and  can be calculated as follows: 
 
(33) a. span  = {(u,v): (u, u)  span  & (v,v)  span } 

b. span ? = {(u,v): (u,u)  span   (v,v)  span } 
c. span ? = {(u,v): if (u,v)  span ? & (u,v)  span   then  (u, v)  span ?} 

 
Interestingly, these clauses conform exactly to the question semantics as proposed by JH.  We 
can see this by applying the expressions in the update formulation of the JH approach (6) to 
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the information state  = W2 (expressing a tautology). The clause (33a) corresponds to clause 
(6b), (33b) corresponds to (6d), and (33c) corresponds to (6e).  

For deriving a more complete correspondence between the JH approach and the 
orthoalgebraic approach let us introduce the flat fragment of QL. It consists of all declarative 
statement of QL, questions ? and conditional questions  (where  and  are 
declaratives). Further, we allow the conjunction of both (conditional) questions and 
declaratives. The flat fragment of QL can be translated into a corresponding fragment of QL* 
by assuming the following translation rules: p = p (for atomic symbols p of QL); () = 
; () = ; (?) = ?;  () = . I will assume that we can express any 
information state  by a sequence  of formulas of QL*:  = span . 

The following fact can be proven for the flat fragment of QL: 
 

(34) «» = span (; )  for any expression  of the flat fragment of QL. 
 
Note that this scheme is not valid for all expressions of QL, for example it does not hold for 
expressions such as ??p. Since such expressions are difficult to interpret anyway, it is not a 
real problem to exclude them and to concentrate on the flat fragment.  

Let us prove fact (34) now. First, consider the case where  is an atomic formula, say p. 
Then we can assume that the set of possible worlds that is assigned to the atomic symbol via 
the interpretation function  defines the projection operator (p) needed for interpreting the 
language QL*. We simply have to assume that (p) is a projection operator that projects into 
the vector space spanned by (p).  Formally, this can be expressed in two different ways: 

 
(35) a. (p) = u(p) au, where au  is a projection operator projecting each vector of into 

the one-dimensional subspace hulled by u; see (15).  
 b. (p) = null ((p)  I) 
 
To cite an example, consider the fragment of QL discussed in Section 2. It consists of two 
atomic symbols p and q and the assignment function is (p) = {10, 11} and (q) = {01, 11}. 
Conforming to the treatment in Section 4.1, the corresponding projection operators are (p) = 
10 + 11 and (q) = 01 + 11. Using the notion of span introduced in (31), we can state the 
following fact: 
 
(36) span p = {(u,v): u(p)  and v(p)}, for any atomic symbol  p of QL. 
 
Next, it is easy to show that in case of commuting declaratives we observe that  
 

span(’; ’) = span ’  span ’. 
 

As a consequence, we get  
 

span(; p) = span   span p =   span p 
=   {(u,v): u(p) and v(p)}   (36) 

= «p» (6a) 
 
This concludes the proof that (34) is valid in case of  = p. 
 Second, we consider an expression  , where  is a propositional formula. It can be 

shown now that «» = span (;): 
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span (;) = span   span  =   span  
=   {(u,v): (u,u)  span  and (u,u)  span } (33a) 

= «» (6b) 
 

 Third, for plain questions ? it can be shown that  «?» =  span(; ?). The proof rests 

on a simple generalization of (33b) which introduces an initial information state  = span . 
The generalization is: 
 
(33) b’. span(; ?) = {(u,v): (u,u)  span (; )   (v,v) span (; )}. 
 

In a similar way, the equivalence «?» = span(; ?) can be shown for proposit-
ional formulas  and . Finally, for declaratives and plain questions  and  it can be shown 

that «» = span(; ). 
 What we can conclude from these considerations is that essential parts of the JH approach 
can be extracted from the operator formalism introduced in this section. In particular, we can 
derive the basic clauses (6) of the JH approach by considering the span of the corresponding 
operators in the orthoalgebraic approach.  
 Despite the existence of an extraction mechanism, it should be stressed that the present 
operator approach and the JH approach are not equivalent. The operator approach is more 
powerful than the JH approach for two reasons. First, it is able to handle question order 
effects (non-commuting operators). This will be discussed in section 6. Second, the operator 
formalism is more structured than the JH system even in the case of commuting operators. 
The point is that the orthoalgebraic approach considers decorated partitions instead of 
standard partitions. In order to see the important differences let us consider some simple 
examples in the next subsection. In Section 5 we will continue the discussion by considering 
some generalizations. 

4.4 Examples with Commuting Operators  
In Figure 2 (Section 2) the meaning of ?p in the JH question semantics was pictured. We see 
two equivalence classes which partition the space W of possible worlds. Figure 8 depicts the 
meaning of ?p in orthoalgebraic semantics. We see the same equivalence classes, but now the 
two blocks are decorated by the quaternions y and n, respectively, corresponding to the two 
possible answers yes and no. 
 

 
 

Figure 8: Picture of meaning ?p in orthoalgebraic semantics 
 

The meaning of the conditional interrogative p?q was pictured in Figure 3 for the JH 
semantics. Figure 9 shows the meaning of the related expression in the orthoalgebraic 
framework.  

y 

n 
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Figure 9: Picture of meaning p?q in orthoalgebraic semantics 
 
The derivation of the relevant partition is as follows: 
 

«p?q» 
= (10+11)+(10+11)(y(01+11)+n(10+00)) 

= (00+01)+(y11+n10) 
 

In both cases, the partition of the logical space consists of three blocks, corresponding to the 
propositions expressed by pq, pq and p. In the latter case these propositions are 
decorated: pq by y, pq by n, and p by 1. As before, we can take the first two decorations 
to indicate the traditional answer types yes and no; and we can take the decoration 1 to 
indicate the condition for a supposition failure.  
 The following example shows the composition of two questions ?p and ?q forming the 
new question ?p?q. Figure 10 depicts the corresponding meaning using the composed 
decorations yy, yn, ny, and nn. 
  

 
 

Figure 10: Picture of meaning ?p?q in orthoalgebraic semantics 
 

Obviously, the parts of the complex quaternions refer to the corresponding subquestions, e.g. 
in tworld 10 the question ?p is answered by y and the question ?q is answered by n. At this 
point we also see the motivation for using quaternions instead of simple numbers for 
indicating composed answers. If we had used +1 for ‘yes’ and 1 for ‘no’, we could not 
distinguish a ‘yes’-‘no’ answer form a ‘no’-‘yes’ answer since we would get 1 in both cases. 
Similarly we could not distinguish a ‘yes’-‘yes’ answer from a ‘no’-‘no’ answer (+1 in both 
cases). 

4.5 Congruent Answers 
An important empirical problem, which any theory of questions and answer has to solve, 
relates to the proper characterization of congruent answers (e.g. Groenendijk and Stokhof 
1997, Krifka 2001). In the simplest case of constituent questions, a congruent question is just 

nn ny 

yy yn 

y n 

1 
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an answer that fills in a constituent for the wh-expression in the question. And a congruent full 
answer is just the question meaning applied to the term-answer. 
 More formally, this idea can be expressed in the following way by the use of the 
application device @ defined in (20): 
 
(37)  is a congruent full answer to a question  iff @(«», t) = «» for some element t of 

the spectrum of «». 
 
A simple example is in order. Clearly, the assertion p is a congruent answer to ?p. This 
derives from the observation that @(«?p», y) = «p». Similarly, p is a proper answer to ?p 
since @(«?p», n) = «p».  

Now consider the following utterance of a question (38a) made by a competent speaker. 
Congruent answers are the conditional answers presented in (38b,c). Intuitively, composed 
answers such as in (38d,e) do not count as congruent answers and are not very appropriate. 
 
(38) a.  If Mary reads this book, will she recommend it to Peter?  
 b. Yes. If Mary reads this book, she will recommend it to Peter. 
 c. No. If Mary reads this book, she will not recommend it to Peter.  
 d.  *Yes. Mary reads this book, and she will recommend it to Peter. 
 e. *No. Mary reads this book, and she will not recommend it to Peter. 
 
Interestingly, the JH approach does not predict the proper conditional answers but the 
conjoined answers. How to handle this problem in orthoalgebraic semantics? Does the 
definition given in (37) generalize to the idea of congruent answers in case of conditional 
questions?  
 Unfortunately, this does not work in the case of conditional questions. However, a simple 
adjustment is possible and provides the proper generalization. The proposal is to change the 
definition by taking the proposition with the decoration 1 into account. As mentioned above, 
this proposition expresses the condition for a supposition failure (see Figure 9 for an 
example).  
 
(39)  is a congruent full answer to a question  iff @(«», t) + @(«», 1) = «» for some 

element t of the spectrum of «».  
 
A consequence of this definition is that congruency is possible only with conditional answers 
for conditional questions. For instance, «pq» comes out as a congruent full answer to 
«p?q». We can derive this fact from the equivalences «p?q» = «p» + «p»«?q» =  1«p» 
+ y«p»«q» + n«p»«q». The application @(«p?q», y) results in «p» and the application 
@(«p?q», 1) results in «p»«q». Consequently, the sum gives «p» + «p»«q», which is 
nothing else than «pq». Hence, according to definition (33), «pq» comes out as a 
congruent answer to «p?q». 
 Similarly, «pq» can be shown to be a congruent full answer to «p?q»: 
 

@(«p?q», n) + @(«p?q», 1) 
= «p» + «p»«q» 

= «pq». 
 
Further, since the two full answers given before are the only congruent answers to the 
question «p?q», «pq» cannot be a proper answer to «p?q». 
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4.6 Preliminary Conclusions 
Concluding this section, I claim that the present approach explains why informationally 
equivalent questions like “Is the door open?” and “Is the door closed?” have different 
meanings. Further it overcomes the conceptual imperfection of the JH approach: only one 
definition of the conditional is required in order to capture both the usual material implication 
of declaratives and the interrogative conditional connecting a declarative antecedent with a 
question. It also overcomes the main empirical problems of the JH approach due to the 
uniformity of the classical partition semantics which gives all partitions the same status. In the 
case of the interrogative conditional, it indicates when an ‘answer’ counts as a species of 
presupposition failure. Moreover, it is simple to show that in orthoalgebraic semantics the 
equivalence between pp? and ?p is no longer valid. And it eliminates perhaps the biggest 
drawback of the JH approach: that it counter-intuitively predicts conjunctive answers for 
conditional questions.19 

5. Comparison with the structured meaning approach 
In a seminal paper, Krifka (2001) argued for a structured meaning account of questions and 
answers (see also Krifka 2004). He demonstrated that the GS partition theory (and related 
approaches summarized as proposition set approaches by Krifka) runs into three problems:  
 

It does not always predict the right focus structure in answers, it is unable to distinguish 
between polarity (yes/no) and a certain type of alternative questions, and it does not allow to 
formulate an important condition for a type of multiple constituent questions. (Krifka, 2001, p. 
287). 

 
Further, Krifka made clear in the same paper that the structured meaning approach can handle 
all three problems. Without going into a detailed discussion here, I will illustrate only the 
close correspondence of the structured meaning account and the present decorated partition 
theory. Krifka summarizes the basic idea underlying the structured meaning approach as 
follows: “Question meanings are functions that, when applied to the meaning of the answer, 
yield a proposition.” (Krifka, 2001, p. 288). 

When we use the application device proposed in the previous section (instead of the 
operation of functional application in a categorical language as proposed by Krifka), then we 
see immediately that our decorated partition semantics shares a basic trait with the structured 
meaning approach: question meanings can be applied to the meaning of (term-)answers 
yielding a proposition. Interestingly, the presented application device @ and the definition of 
congruent answers as given in (39) is also valid for conditional questions.  
 As far as I can see, the structured meaning approach has not been applied to conditional 
questions yet. It is an interesting task to extend this approach in order to include conditional 
questions. At the end of this section I will make an explicit proposal for that. This proposal 
simply implements the idea underlying definition (39) within the structured meaning 
approach.  
 In case of commuting operators, the orthoalgebraic semantics of Section 4 can be 
translated into a traditional format. If all operators commute, we have a common system of 
orthonormal eigenvectors. This system of eigenvectors can be identified with the set of 
possible worlds W. In the structured meaning approach, information states are no longer 
defined by equivalence relations describing partitions of W. Instead, they are defined by 

                                                 
19 There are other puzzles besides the discussed ones. One refers to unconditionals (Zaefferer 1991), exemplified 
by sentences such as “Whether you like it or not, your talk was simply boring” (Zaefferer, 1991: p. 488). Several 
authors have suggested analyzing unconditionals by presuming questions in the antecedent of the conditional 
(Arita and Kaufmann 2008, Isaacs and Rawlins 2008, Rawlins 2008, Groenendijk and Roelofsen 2010). We have 
to leave an analysis of unconditionals by using the present framework for another occasion.  
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decorated partitions which can be represented by functions f from W onto some domain. The 
values of this function are the decorations of the relevant equivalence classes. Since we do not 
consider wh-questions in this paper but only (conditional) yes/no-questions, the relevant 
domain consists of the elements 0,1, y, n. 
 Let us consider the query language QL from Section 2. The semantics provided in 

Section 2 formulated the information change potential «» of an expression  of QL as a 
function from information states to information states. In Section 2, information states were 
considered as equivalence relations over the logical space,   W2. Instead of equivalence 
relations, now we consider information states as functions f from W into the domain {0,1, y, 
n}. The following update clauses are stipulated where  is a classical interpretation function 
(assigning subsets of W to the atomic propositional symbols): 
 

(40) a. f«p» = u. f(u)  u[(p)] , where u(X) is the characteristic function of set X.20 

 b. f«» =  u. uf »«   (with ynny  ,,01,10 ) 

 c. f«» = f«»«» 
  
     y, if f«»u = 1 
 d. f«?»   =  u.  
    n, if f«»u = 0 

 
     1, if f«»u = 0 
 f. f«» = u.  
     f«»u, elsewhere 

 
In the classical case of commuting operators, the operator formalism from Section 4 and the 
present formulation agree. Let us introduce the notion of d-span (defining a decorated 
partition for linear operators). In close analogy to the notion of span defined in (31) we 
assume that all considered operators commute and we identify the common system of 
eigenvectors with the set of possible worlds W.  
 
(41) d-span a = the function f defined on W such that f(u) = the eigenvalue of a in state uW. 
 
Let us assume that a given information state f can be represented by a sequence of expressions 
 of QL: f = d-span . We can prove then the equivalence of the orthoalgebraic semantics 
with the present structured meaning approach as expressed by the update clauses in (40). 
More precisely, it can be proven that for any expression  of the flat fragment of the query 
language QL the following proposition is valid:  
 

(42) f«»  = d-span «; ’», where ’ is the translation of  into QL* 
 
For the proof, we assume pairwise commuting operators. We get   
 

(43) d-span «; ’»u = d-span «»u  d-span « ’»u = f(u)  d-span « ’»u 
 
The equivalence (42) is easily shown for any atomic symbol p. Here we get 
 

                                                 
20    1 if uX 
      u(X) =def  
   0  if  uX 
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d-span «; p»u  = f(u)  d-span «p»u 
 

Further, it is «p» = (p) and for the operator (p) the eigenvalue of a state uW is 1 if  

u(p) and 0 if u(p). Hence, we get d-span «p» (u) = u[(p)]. Consequently, we get 
 

d-span «; p»u  = f(u)  u[(p)]. 
 
Comparing this result with the information change expressed by (40a), we see the sameness. 
This verifies the equivalence (42) for  = p. It is left for the interested reader to complete the 
proof and the show the equivalence for the other clauses. 
 In Section 3.7, the application device @ for linear operators was defined. A similar 
device can be formulated for the structured meaning account with reference to information 
states f: 
 
(44) @(f, ) = {u: f(u) = } 
 
The application functor @ takes an information state f and a possible value  of the function f 
and calculates the set of possible worlds that yield exactly the value  when f is applied to 
them. Definition (39) of a congruent full answer can now be translated into the following 
form conforming to the structured meaning approach: 
 
(45)  is a congruent full answer to a question  in information state f  iff  

@(f«», t)  @( f«», 1) = f«» for some element t of the set {0,1, y, n}. 
 
For example, we can take  f  to be the empty information state over W = {10, 11, 01, 11} (i.e., 
f(u) = 1 for all uW). Further, the interpretation function is (p) = {10, 11} and (q) = {01, 
11}. Then the applications @( f«p?q», y) = {11} and @( f«p?q», 1) = {00, 01} can be 
calculated by the use of (40f). Correspondingly, the union of these two propositions is {11, 
00, 01}. This is identical to the proposition f«pq». Hence, pq is a congruent full answer 
to the question p?q in the information state f. Obviously, the example shows that  the 
translation of the operator formalism into the more standard account of structured meaning 
works properly. 
 Taking the present result into account, one could argue that a semanticist interested in 
query languages could ignore the orthoalgebraic formalism completely and develop his 
theories completely by using standard techniques of elementary set theory. Although this is 
true to some extent, it misses out the important issues of generality, uniformity and 
systematicity that are intrinsic to the orthoalgebraic account. These are advantages that cannot 
be ignored for theoretical reasons. In my opinion, there are three main arguments for 
continuing to use the operator framework. First, there is the methodological aspect of 
understanding how quantum theory in physics relates to question theories in formal semantics. 
Crossing boundaries seems to be useful for both disciplines. Second, I think that the 
orthoalgebraic formalism gives a very concise and elegant description of a theory of question 
and answers (assuming the reader is familiar with some basic elements of linear algebra). 
Section 4.2 has shown that this approach has the potential to handle situations of uncertainty – 
a very important aspect of question semantics. Third, this formalism straightforwardly 
generalizes to the non-commutative case. Hence, it can be used to model phenomena of 
opinion forming as discussed in survey research (Schuman and Presser 1981) and personality 
diagnostics (Blutner and Hochnadel 2010). The following section is devoted to the issue of 
non-commutativity. 
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6. Attitude Questions 
In the introductory Section 1, I have given a first illustration of the non-commutative 
character of attitude question. In this section, I will start with summarizing the basic findings 
concerning order effects for attitude questions. Then I will discuss how the orthoalgebraic 
framework can describe the established phenomena. Finally, I will consider a recent 
formalization of Jung’s personality theory (Blutner and Hochnadel 2010), and I will debate 
the explanatory value of the approach. 
 

6.1 Question Order Effects in Survey Research 
Schumann and Presser (1981) described two kinds of ordering effects, which they called 
‘consistency’ and ‘contrast’ effects. In a more recent article,  Moore (2002) reports on the 
identification of two different types of question-order effects termed as ‘additive’ and 
‘subtractive’.  The following figure gives a schematic sketch of the four different types of 
question ordering effects: 

          
        Consistency              Contrast      Additive    Subtractive  
 

Figure 11: Four types of order effects for attitude questions. The size of the blocks 
for questions A and B indicates the percentage of ‘yes’-answers when the 
questions appear isolated. The arrows indicate whether the percentage of ‘yes’-
answers to these questions increases or decreases if the question is preceded by 
the alternative question (either A or B). 

 
Consistency can be exemplified with the case of accepted communist reporters from the 
introductory part. Another example is shown in the following table (adapted from Moore 
2002). It does not need any comments. 
 
 

Consistency effect Percentage saying “yes” 

 Do you generally think 

 Clinton Al Gore 

 is honest and trustworthy 

mentioned in isolation 50 68 

mentioned second (directly 
after the other person) 

57 60 

  
 Table 1: Illustration of the consistency effect (following Moore 2002) 
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Replacing the names of the prominent persons by two other prominent names can change the 
picture dramatically as shown in Table 2. Here the names of two Republican leaders in the 
Congress are inserted, senate majority leader Robert Dole and speaker of the House Newt 
Gingrich.  
 
 

Contrast effect Percentage saying “yes” 

 Do you generally think 

 Gingrich Dole 

 is honest and trustworthy 

mentioned in isolation 41 60 

mentioned second (directly 
after the other person) 

33 64 

  
 Table 2: Illustration of the contrast effect (following Moore, 2002) 
 
An explanation of the differences between Table 1 and Table 2 is not immediately clear. 
Possibly it has to do with “the symbiotic relationship of the president and vice-president, for 
example, vs. the often competing roles of House Speaker and senate majority leader” (Moore 
2002: 84). Whereas the similarities are accommodated in the first case, the differences are 
stressed in the second case.  
 Table 3 gives an illustration of the additive effect. The table shows that the amount of 
racial hostility among blacks/whites appears to increase when a related question about racial 
hostility among whites/blacks is asked before. 
 
 

Additive effect Percentage saying “yes” 

 Many  

 white people black people 

 dislike other race 

mentioned in isolation 41 46 

mentioned second (directly 
after the other person) 

53 56 

 
 Table 3: Illustration of the additive effect (following Moore, 2002) 
 
Again, an explanation of this effect is not immediately clear. Possibly it has to do with 
overcoming a certain threshold in admitting racial hostility when a related question is asked 
before. 
 The final effect is subtraction as illustrated in Table 4, where two eccentric American 
baseball gamers are involved.  
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Subtractive effect Percentage saying “yes” 

 As you may know, former Major League player  

 Pete Rose Shoeless Joe Jackson 

 is ineligible for baseball's Hall of Fame due to 
charges that he had gambled on baseball games. Do 
you think he should be eligible for admission to the 

Hall of Fame? 

mentioned in isolation 64 45 

mentioned second (directly 
after the other person) 

52 33 

 
 Table 4: Illustration of the subtractive effect (following Moore, 2002) 
 
We can only speculate about the decrease of acceptance when the second question is asked. 
“When asked about the second ballplayer, respondents apparently became more sensitive to 
the larger framework issue of how many exceptions should be made for ballplayers who 
violate baseball's rule. For many people, it appears as though consideration of one exception, 
whether it was for Rose or for Jackson, made them less likely to consider a second 
exception.” (Moore 2002, 87). 

6.2  An Orthoalgebraic Approach to Question Order Effects 
Recently, Wang and Busemeyer (2011) have shown that an orthoalgebraic approach can 
describe all four types of order effects. They define the ordering effect as follows (using the 
present notations): 
 
(46) a(b) = [[a;b]]u + [[a';b]]u  [[b]]u (note: we write a' instead of a ) 
 
Hereby [[a;b]]u is the probability of the sequence of two propositions (described by projection 
operators as explained in Section 4.3). In the classical case of commuting operators the order 
effects becomes zero. In the non-classical the following fact can be proven considering a pure 
state u;   is a phase shift parameter introduced by factorizing the complex number defined by 
the scalar product au  bu. 
 
(47) a(b) = 2([[a;b]]u  ([[a]]u [[b]]u)

½ cos) 
 
Proof:     

[[a;b]]u + [[a';b]]u  [[b]]u = 
bau  bau + ba'u  ba'u  (bau + ba'u)  (bau + ba'u) = 

bau  ba'u  ba'u  bau = 
2 Re(bau  ba'u) = 

2 Re(bau  (bba)u) = 
2 bau  bau 2 Re(au  bu) = 

2([[a;b]]u  ([[a]]u [[b]]u)
½ cos). 

 
In dependence of the parameter , the following order effects are defined: 
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 b(a) a(b) phase factor condition 
 

assimilation +  [[a;b]]u > cos > [[b;a]]u [[a]]u > [[b]]u 
contrast  + [[a;b]]u) < cos <  [[b;a]]u [[a]]u > [[b]]u 
additive  + + cos <  [[a;b]]u, [[b;a]]u none 
subtractive   cos >  [[a;b]]u, [[b;a]]u none 

 
Table 4: Ordering effects as resulting from phase shifts  (adopted from Wang and 
Busemeyer 2011) 

 
Can insights of quantum theory, initially invented to explain order effects on measurements in 
physics, be used for providing a natural explanation of order effects of survey questions? The 
previous discussion has shown that the general orthoalgebraic framework can describe all 
four types of question order effects. However, an explanation demands more than a 
description of the phenomena using a particular theoretic framework.  

In discussing different approaches to decision making, Johnson & Busemeyer (Johnson 
and Busemeyer 2010) have considered three stages of the theoretical development:  

 
(i) normative approach  –  reducing decision problems to mathematical optimization 

problems; 
(ii) descriptive approach – describing  how humans actually make decisions; 
(iii) computational approach – seeking to understand the underlying cognitive 

processes that produce the behavior described by the second approach.  
 

Since the orthoalgebraic approach is a proper generalization of the classical Boolean 
approach, it brings the normative and the descriptive approach more closely together (Blutner 
2010). However, it is not a computational theory in the sense of Johnson & Busemeyer  
(2010) and does not really provide an explanation of the question order effects. In contrast to 
quantum mechanics where we find Bohr’s helpful correspondence principle, which directs 
the translation from classical theories into the orthoalgebraic formalism, the situation is 
different in the case of survey research. There is simply no formal classical theory available 
that could be translated into the orthoalgebraic formalism.21 

In the next subsection, I will debate a further example where we find question order 
effects, this time pursuing the computational approach.  

                                                 
21 I should acknowledge the existence of phenomenological models that can provide interesting insights into the 
nature of order effects. For instance, Elke Weber, Eric Johnson, and others (Weber and Johnson 2006, Johnson, 
Haubl, and Keinan 2007, Weber and Johnson 2009) have proposed that memory processes can be used to model 
decision tasks. “This approach, most recently dubbed ‘Query theory’, assumes that preferences that drive choice 
and other decisions are based on a collection of serially posed queries to memory concerning relevant 
characteristics of the task. For example, if deciding whether to buy a certain digital camera, an individual might 
attempt to recall experiences with similar models or generate the pros and cons of buying the camera. Query 
theory is able to explain some empirical trends in human decision behavior by embellishing this simple notion 
with what is known about human memory, such as serial position effects, priming, and interference. Although 
the theory’s assumptions have been empirically supported, at this point it has not been formally introduced as a 
mathematical model or at a specific algorithmic level, as the preceding computational models have.” (Johnson & 
Busemeyer 2010: p. 745). However, this is not a kind of formal theory that has to be translated into the 
orthoalgebraic formalism. Rather, it is a system of informal ideas that can possibly be explicated and 
mathematicized in the new formalism. 
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6.3 Attitude Questions and C.G. Jung’s Personality Theory  
I will sketch now a potential application of the present theory of attitude questions. It relates 
to personality theory as developed by Carl G. Jung (1921). Jung developed his theory after 
almost 20 years of practical experience and work as a specialist in psychiatric medicine. In his 
book, Jung gave a careful analysis of the universals and differences of human personalities. 
Jung’s theory is based on three psychological opposites, equally valuable but realized with 
different preferences for different personalities. The first opposite (a) represents the 
extravert/introvert opposite. This opposition reflects the most popular part of Jung’s theory. 
We find this opposition in several theories, notably Hans Eysenck’s, although it is often 
hidden under alternative names such as “sociability” and “surgency”. Introverts are people 
who prefer the internal world of their own thoughts, feelings, fantasies and dreams, while 
extroverts prefer the external world of things, events, people and activities.22 The two other 
oppositions refer to what Jung calls the four psychological functions. They consists of two 
opponent pairs: (i) sensing (S) and intuition (N) – related to two opponent ways of perceiving 
information, either directly by the senses or in a rather indirect way by the integration of large 
amounts of information; (ii) thinking (T) and feeling (F) – related to two opponent ways of 
judging information, either by reasoning or by evaluation.  
 The three opposites are exemplified by three different types of forced choice questions 
illustrated in (48): 
 
(48) a. When the phone rings, do you hasten to get to it first, or do you hope someone else 

will answer? (E/I) 
 b. In order to follow other people do you need reason, or do you need trust? (T/F)  

c. Are you more attracted to sensible people or imaginative people? (S/N) 
 

When a person answers with ‘yes’ to the first question, this answer is an indication of 
extraversion (E); if she answers with ‘no’ the answer indicates introversion (I). Similarly for 
(48b): here a ‘yes’-answer indicates thinking (T) and a ‘no’-answer indicates feeling (F). And 
for (48c): a ‘yes’-answer indicates sensing (S) and a ‘no’-answer indicates intuition (N).  
 With regard to the psychological function, Jung says that we all have them. We just have 
them in different proportions. Each of us has a superior function, which we prefer and which 
is best developed in us, a secondary function, which we are aware of and use in support of our 
superior function. Further, we still have the two other functions, but they are less developed. 
In order to convey his idea of how the four functions work together, Jung offered the image of 
a cross. Fig. 12 shows an image which is a slight modification of the original picture (Jung, 
von Franz, and Henderson 1968, p. 60). 

                                                 
22 The words have become confused with ideas like shyness and sociability, partially because introverts tend to 
be shy and extroverts tend to be sociable. Jung, however, intended for them to rather refer to whether an 
individual tends to face toward the persona and outer reality or toward the collective unconscious and its 
archetypes. 
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Figure 11: The four psychological functions according to Jung (1921) organized 
in pairs of two opposing functions. The numbers enumerate eight sectors in 
dependence of what are the two dominant functions (for instance, sector 1 shows 
feeling (F) as the primary function and intuition (N) as the secondary function) 

 

Comparing Jung’s drawing (Figure 11) with the Bloch sphere (projected on the x-z-plane; 
Figure 7a) suggests to represent the four psychological functions as Pauli spin matrices 
(Blutner & Hochnadel 2010). In terms of Pauli spin matrices the opponent pair S/N is 
represented by xS  / xN   and the pair T/F is represented by zT  / zF  . I have 

to stress the point that this choice is primarily motivated by Jung’s idea of discriminating 8 
basic personality types in dependence of one of four primary psychological functions (T, F, S, 
N) and two secondary functions that correspond to the complementary pair, either S/N or T/F.  
 According to C.G. Jung (1921), the extraversion/introversion opponent pair should not be 
seen as an independent dimension in addition to the four psychological functions. Rather, 
Jung sees each psychological function realized in one particular attitude (extraversion or 
introversion or something in between). Hence there are no pure psychological functions. They 
are always in dependence of a particular attitude. I will ignore this exciting aspect of Jung’s 
theory here (and its formal treatment by entangling two qubits, one describing the 
psychological functions and the other describing their attitudes; see Blutner & Hochnadel, 
2010).  
 The present model can be seen as following the computational approach. It explicitly 
models the different question types in terms of Pauli matrices. Of course, the application of a 
two-dimensional Hilbert space is a rather coarse idealization. However, it can be hoped that 
this idealization reflects some basic traits of the real situation of constructing preferences. It is 
not difficult to see that the present analysis is different from the treatment of order effects in 
Section 6.2, where a normative/descriptive methodology has been applied. In the present 
account specific operators were stipulated for the different question types under idealized 
conditions. In Section 6.2 we did not suggest specific operators for the different questions. 
Rather, we modeled them by using abstract schemes and fitting the free parameters available. 
Without an explicit choice of these parameters, the model is almost unable to make any 
prediction. This is different for the qubit model of personality. 
 Even when ignoring the extraversion/introversion attitude, the qubit model of personality 
makes interesting predictions, which can be tested experimentally. Let us assume that the state 
of personality can be represented by a vector  of a two-dimensional Hilbert space. As 
explained in Section 3.4, this vector can generally be written as  
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(49)  

 

Now I can consider the Pauli matrix zT   as representing the Thinking-feeling random 

variable (+1 for clear thinking, -1 for clear feeling). In contrast, xS  represents the 

Sensing-iNtuition random variable (+1 for clear intuition, -1 for clear sensing). Using the 
results of Section 3.4, the probability for a ‘yes’-answer to the thinking/feeling question is 
cos2(/2), and the probability for a ‘yes’-answer to the sensing/intuition question is 
½(1+sin()cos(). From this the expected value of an answer can be calculated (where ‘yes’ 
counts as +1 and ‘no’ counts as –1): )cos()(TE


and )cos()(s  inSE )(


. The following 

inequality is predicted (Blutner 2010): 
 
(50) 1)()( 22  SETE


. 

 
The symbol E


 represents mean value (calculated for T and S). For classical, binary random 

variables it is possible that the sum in (50) is greater than 1 (it could be 2.0 at the maximum). 
However, investigating 51 subjects, we never found a statistically significant violation of the 
inequality (36). Of all cases, the sum on the right-hand side of the inequality (16) was 
significantly smaller than 1 (p<0.05) in 47 of 51 cases, and in no case it was significantly 
greater than 1 (p>.2). This suggests that the constraints formulated by the qubit approach 
really are satisfied by a large population of personalities.  

 
 

Figure 12: Checking inequality (36). The graph shows that the results of 51 
subjects are in agreement with this hypothesis. Only a few subjects are situated 
slightly outside the unit circle; however, the deviation from the unit circle is not 
significant in these few cases (taken from Blutner 2010). 

 

Next consider the phenomenon of ordering effects. Figure 13 shows the expected question 
order effects (QOE) for two different phase parameters, cos() = 0 and cos() = 1, in 
dependence of the personality type. The personality type is described by the azimuthal angle  
of the Bloch sphere. The pure personality types N (iNtuition), T (Thinking), S (Sensing), and 
F (Feeling) are listed in the graphics.  
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Figure 13: Calculated question order effects in dependence of the personality type 
(described by the parameter ) and for two different phase parameters: left: cos() 
= 0 ; right: cos() = 1. The solid (blue) curve shows the question order effect 
S(T) and the dashed (red) curve shows the question order effect T(S).  

 
In case of phase parameter cos() =  0, we find additive order effects (the QOE is always non-
negative) for almost all personality types. In a small region close to F, we find consistency 
order effects. In the second case (cos() = 1), we find consistency order effects for all 
personalities between S … F and N … T. In the other regions, we find additive order effects. 
Interestingly, we do not find subtractive and contrast order effects for any personality type 
(even when taking other phase parameters into account). These are interesting predictions 
which could be tested empirically. 

7. Conclusions 
Taking the lead from orthodox von Neumann quantum theory (Von Neumann 1932), I have 
introduced a handy generalization of the Boolean approach to propositions and questions: the 
orthoalgebraic framework.  I have demonstrated that this formalism relates to a formal theory 
of questions (or ‘observables’ in the physicist’s jargon). Surprisingly, this theory allows 
formulating conditional questions, and thus it provides the semantic power for managing 
question semantics. In the case of commuting observables, there are close similarities between 
the orthoalgebraic approach to questions and the Jäger/Hulstijn approach to question 
semantics. However, the present approach is more powerful. It is able to overcome most of 
the difficulties of the Jäger/Hulstijn approach. Further, I have demonstrated that the present 
approach can be seen as a decorated partition theory of questions if question order effects are 
excluded. Hence, it is fully compatible with the structured meaning approach to questions. 

In the last part of the paper, I have discussed non-commuting operators and question order 
effects. I have argued that the order of the questions can definitely be important, for instance 
in the case of attitude questions with a flexible dimension of decision. In such situations most 
people do not have a predetermined opinion. Instead, the opinion is formed to a large extent 
during the process of questioning in a context-dependent way. This naturally leads to the 
question order phenomenon. I have demonstrated that the present framework provides an 
adequate description of the four possible question order effects discussed in the literature on 
survey research (Moore 2002).  
 The present theory should not only be of interest for scholars of formal semantics, but also 
for scholars from the field of quantum theory. It is clear from physics that observables are 
questions of some kind but till now nobody has looked at observables as real questions in 
natural language with their own semantics. As far as I can see, this is the first attempt where 
the connection is made between physical observables and theories for the semantics of 
questions. An important methodological issue relates to the descriptive power of a theory and 
its explanatory value. It could be argued that the present formalism is surely adequate for 

  F  N       T      S   F   F  N       T      S   F 

 P(T=1) > P(S=1)        P(T=1) < P(S=1)         P(T=1) > P(S=1)    
 



 36

describing quantum phenomena in physics, but much too general and powerful when applied 
to the semantics of natural language. In fact, we have mainly discussed the case of commuting 
observables/question, i.e. we have restricted ourselves to the classical case of Boolean 
algebras. Why then use such a powerful formalism? 
 There are several aspects that can be discussed in this regard. First, there is the historical 
interest to relate the formal semantics of questions as developed by Groenendijk & Stokhof 
(1984, 1997), Krifka (2001) and others with the formal treatment of observables in quantum 
physics (e.g. Von Neumann 1932, Birkhoff and von Neumann 1936, Piron 1976, Kalmbach 
1983, Dalla Chiara, Giuntini, and Greechie 2004). One result of this comparison is the 
observation that quantum physics corresponds with a decorated partition theory, which has 
much more in common with a structured meaning approach than with the GS partition theory 
of questions. Second, the operator formalism of quantum mechanism allows a straightforward 
analysis of conditional questions. Possibly we could also implement the relevant ideas in the 
more traditional theory of structured meanings. However, the operator formalism seems to be 
very natural for a uniform treatment of questions, answers, and propositions. Third, the full 
orthoalgebraic framework – without the restriction to commuting observables – can be useful 
for understanding how quantum-like features are generated on the macro-level of cognition. I 
have stressed this point in Section 1 already and I have to stress it again at the end of this 
paper. The phenomena of opinion forming and the proper treatment of diagnostic questions 
(personality diagnostics) are typical cases in point. I have given some examples in the last 
section which also show the usefulness of Pauli spin operators in two-dimensional Hilbert 
spaces (for more discussion, see Blutner and Hochnadel 2010). The application of these 
specific elements of the formalism restricts the general framework considerably and leads to a 
series of predictions, which can be tested empirically. 
 There are several tasks that have to be left for future research. A first couple of tasks, for 
instance, are the development of the inferential machinery of the orthoalgebraic formalism, 
the extension to wh-questions, and the working out of the probabilistic component. A second 
important problem is a careful discussion of the normative/descriptive issue. In this 
connection it can be discussed whether the present orthoalgebraic framework can solve 
puzzles of bounded rationality (Aerts 1982, Franco 2007a, Aerts, Broekaert, and Gabora 
2008, Blutner 2009, Bruza, Busemeyer, and Gabora 2009). A third important problem is the 
proper distinction between uncertainty and ignorance, a problem that is highly relevant for 
any advanced theory of questions and answers. In general, ignorance is reasonable if the 
expected benefits of information are too small relatively to the costs. A typical situation can 
be found in elections, where people in general choose to remain uninformed (Downs 1957). 
By contrast, uncertainty refers to situations where people use statistical information to 
optimize their decision. Recently, it has been argued by Franco (2007b) that the behavior of 
people under rational ignorance can be described best within the quantum mechanics 
formalism, in which the states of the system are described by vectors in the Hilbert space. 
Alternatively, a stochastic mixture of the eigenstates of the operators under discussion 
represents people that reason under uncertainty. In rational-ignorance regime a kind of 
ignorance principle holds. It states that the product of the variances relevant to at least two 
questions has a non-trivial lower bound. The inventor of the uncertainty principle in quantum 
mechanics, Werner Heisenberg, had a fine sense for applying his principle outside the domain 
of physics. When asked about his attitude towards Christianity he used to say, with a fine 
irony befitting the inventor of the uncertainty principle: “If someone were to say that I had not 
been a Christian, he would be wrong. But if someone were to say that I had been a Christian, 
he would be saying too much” (quoted from Lindley 2008: 77). 
 If there is a bit of truth in the supposition that the abstract formalism of quantum 
mechanics will find useful applications in the domain of cognition, then this suggests that an 
active dialogue between the traditional model-theoretic approaches to semantics and the 
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orthoalgebraic paradigm is mandatory. The use of know-how from physics and quantum 
information science is a very substantial aspect of the orthoalgebraic approach. It helps to 
integrate the different disciplines and makes it possible that formal semantics descends from 
its ivory tower and engages in personality diagnostics and social problems. It leaves the 
protected intellectual field of 'pure science' and extends formal semantics to the fruitful field 
of applied sciences.  
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