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Abstract 

Taking the lead from orthodox quantum theory, I will introduce a handy generalization of the Boolean approach 
to propositions and questions: the ortho-algebraic framework.  I will demonstrate that this formalism relates to a 
formal theory of questions (or ‘observables’ in the physicist’s jargon). This theory allows to formulate 
conditioned questions such as “If Mary reads the book will she recommend it to Peter?”, and thus gives it the 
semantic power of inquisitive semantics. In the case of commuting observables, there are close similarities 
between the ortho-algebraic approach to questions and the Jäger/Hulstijn approach to inquisitive semantics. 
However, there are also differences between the two approaches even in case of commuting observables. The 
main difference is that the Jäger/Hulstijn approach relates to a partition theory of questions whereas the ortho-
algebraic approach relates to a ‘decorated’ partition theory (i.e. the elements of the partition are decorated by 
certain semantic values). Surprisingly, the ortho-algebraic approach is able to overcome most of the difficulties 
of the Jäger/Hulstijn approach. It will be shown that the present decorated partition theory is fully compatible 
with the structured meaning approach to questions assuming the latter can be extended to include conditioned 
questions. Concluding, I will suggest that an active dialogue between the traditional model-theoretic approaches 
to semantics and the ortho-algebraic paradigm is mandatory. 

 

1 Introduction  
There is a conceptual analogy between the semantics of questions as developed by 
Groenendijk & Stokhof (1984, 1997) and the formal treatment of observables in Quantum 
Physics (e.g. Birkhoff & von Neumann 1936; Von Neumann 1932). In both cases a question 
(observable) partitions the state space in equivalent classes where two states are equivalent if 
they give the same answer (the same result of measuring the observable). 
 Quantum physics reduces to classical physics if all observables are commuting. It could 
be supposed that in this borderline case the treatment of observables coincides in quantum 
physics and Groenendijk/Stokhof’s (GS for short) partition semantics. However this is not the 
case.  The main reason is that in quantum theory the partitions are decorated (with the relevant 
eigenvalues of the projecting eigenspaces). The GS partition semantics does not know any 
decorations. Hence, questions such as in (1a) an (1b) are considered equivalent assuming that 
‘open’ and ‘not closed’ are semantically equivalent.1  
 
(1) a. Is the door open? 

b. Is the door closed? 
c.  Peter knows if the door is open 
d. Peter knows if the door is closed 

 
Consequently, the equivalence of (1c) and (1d) comes out automatically  as a result of the 
equivalence between (1a) and (1b). Though not doubting the equivalence between (1c) and 
(1d) there are some doubts about the semantic equivalence of the two questions (1a) and (1b) 
(see Krifka 2001). 

                                                 
1 If you don’t like the examples with ‘open’ and ‘closed’ because you feel the relevant constructions aren’t really 
semantically equivalent, you can construct similar examples using ‘even’ and ‘odd’. 
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 Another difference between the two treatments has to do with the analysis of conditional 
questions such as in (2)2: 
 
(2) If electron 1 has spin ↑ what is the spin of electron 2? 
 
Using the operator formalism of quantum theory it isn’t difficult to formalize the content of 
(2). However, the standard GS partition theory does not introduce a conditional operator 
general enough to express conditional questions. To be sure, the GS partition theory makes a 
strict distinction between questions and answers. Semantically, questions are described by an 
equivalence relation and answers are described by propositions (sets of possible worlds). 
Surprisingly, such a distinction is not made in quantum physics where both questions 
(observables) and answers (projection spaces) can be treated as particular linear operators. It 
is exactly this uniform treatment that allows a straightforward treatment of conditional 
questions.  
 Recently, Groenendijk (2008) started a programme to unify the treatment of question and 
answers. Unfortunately, this programme eliminates the partition theory. However, there is 
also one treatment that extends the GS question theory to conditional questions without giving 
up the partition idea. This is the Jäger/Hulstijn (JH for short) approach to inquisitive 
semantics (Hulstijn 1997; Jäger 1996). In the JH approach a new operator is designed for 
modelling conditional questions.  
 In the present paper a new solution to unify the analysis of questions and answers will be 
proposed based on a decorated partition theory. This solution bears a close resemblance to the 
JH theory.  However, there are also some important differences, and I will demonstrate how 
several shortcomings of the JH approach can be overcome by using the decorated partition 
theory including the operator formalism known from quantum theory.  
 The quantum approach to observables/questions includes a classical (Boolean-based) 
counterpart but it cannot be reduced to it. It’s much more general. The point is that an 
observable/question has definite values only in the eigenstates of the question/observable 
under discussion. If a system is in a certain state that is not an eigenstate of the 
question/observable, then the system first moves into a corresponding eigenstate where the 
question gets a definite answer. This change of the state – silently influenced by the question 
asked (or by the measurement that is performed) is characteristic for the micro-world of 
electrons, photons and other so-called elementary particles. Recently, it has been argued that 
the very same phenomenon is observed in the cognitive realm. The mind is very sensitive to 
context. Asking a question is enough to change the state of the mind such that the system’s 
answer to a particular question may depend on other questions asked before. This is a 
common observation in the context of opinion forming and diagnostic questions (e.g. Aerts, 
Czachor & D’Hooghe 2005). Only recently interest was generated in this new and fascinating 
approach to understanding cognition based on quantum information processing principles 
(Aerts, Broekaert & Gabora 2006; Aerts & Gabora 2005a; Aerts & Gabora 2005b; 
Busemeyer, Wang & Townsend 2006; Franco 2007a; Franco 2007c; Geissler, Klix & 
Scheidereiter 1978; Graben 2004; Graben & Atmanspacher 2006; Khrennikov 2003a; 
Khrennikov 2003b; Primas 2007). Even though this is an attractive research topic and – in 
principle – the developed framework is able to deal with the relevant observations, it goes 
beyond the present squib and must be left for another occasion.  
 Hence, in the present paper I restrict myself to the classical case of commuting 
observables/questions. This is a scenario where the ortho-algebraic framework of quantum 
theory reduces to the Boolean framework. The assumed restriction allows to focus on the 
similarities and differences between the question theories developed by students of formal 
                                                 
2 The construction of such examples is very common in the literature that interprets the famous EPR thought 
experiment (cf. Einstein et al. 1935).  
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semantics and those developed independently (and much earlier) by physicists. However, this 
restriction has to be given up in the context of opinion forming and diagnostic questions as 
used in personality psychology where the ordering of a series of test questions matters (for a 
recent discussion, see Blutner & Hochnadel 2008). 
 The organization of this paper is as follows. In the next section I give a concise 
introduction to inquisitive semantics as developed in the JH approach. Section 3 introduces 
the basic ortho-algebraic framework as it has been used in quantum information theory.  In 
section 4 I develop my ortho-algebraic semantics for question and answer. The model 
deviates in some respects from the inquisitive semantics treated in section 3; both the 
differences and the strict similarities are discussed.  A comparison with alternative approaches 
is made in section 5. Surprisingly, there is a close similarity between the so-called structured 
meaning approach and the present theory of decorated partitions. This suggests extending the 
former approach to conditional questions along the lines suggested by the latter theory. 
Section 6 finally draws some general conclusions. 

2. Inquisitive Semantics: An Introduction 
Many recent analyses of the meaning of questions start with three assumptions: (i) to 
understand a question is to understand what counts as an answer to that question; (ii) an 
answer to a question is an assertion or a statement; (iii) an assertion is identical with its 
propositional content (cf. Groenendijk & Stokhof 1997, p. 1066). Different approaches that 
fill into this scheme are (a) Hamblin (1973) who identifies a question with the set of 
propositional contents of its possible answers, (b) Karttunen (1977) for whom it is the smaller 
set of its true answers, and (c) the GS partition theory (Groenendijk & Stokhof 1984; 
Groenendijk & Stokhof 1997) defining the meaning of a question as the set of its complete 
answers. Krifka (2001) categorises these theories under the label proposition set approach 
and contrasts it with the so-called structured meaning approach (e.g., Hausser 1983; Loeser 
1968; for more references see Krifka, 2001). In this latter approach, the answers to wh-
questions are identified with the senses of noun phrases rather than those of sentences. 
Accordingly, the meanings of questions are constructed as functions that yield a proposition 
when applied to the semantic value of the answer (see section 5 for more discussion).   
  Inquisitive semantics is a version of update semantics which takes into account that 
sentences not only provide data, but also raise issues. In the GS theory these two tasks are 
strictly divided over two syntactic categories: declarative sentences provide data and 
interrogative sentences raise issues. This strategy has its limitations, e.g., it does not allow us 
to represent conditional questions.3 Recent developments of inquisitive semantics deviate 
from the classical picture in different ways. Some writers claim it is sufficient to modify 
classical partition theory in order to adapt it for the purpose of conditioned questions (Hulstijn 
1997; Jäger 1996). Others claim classical partition semantics has to be given up for the same 
purpose (Velissaratou 2000). 
  Obviously, the simplest way to unify questions and answers is to adapt partition semantics 
by saying that not the whole domain of possible worlds has to be partitioned but only a 
subpart of it. A proposition then can be seen as partitioning the set of all worlds that make the 
proposition true into a partition consisting just of one element: the set of worlds that make the 
proposition true. A conditional question then partitions the set of all worlds where the 
antecedent of the conditional is true.  As we will see immediately, such a version conforms to 

                                                 
3 There are two other potential shortcomings, but the discussion of them is beyond the scope of the present 
paper: (i) a proper treatment of hybrid expressions such as disjunctions which act as questions and assertions; (ii) 
the account for certain typological facts that demand  a unification of question and declarative  semantics (cf. 
Groenendijk 2008). 
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the JH approach. Surprisingly, this is the variant of partition theory that most naturally results 
from the ortho-algebraic approach as used in quantum theory.  
 Let’s introduce the language of the formal setting first. Consider the logical query 
language QL  to be the language of propositional logic L, extended with a question operator 
“?” and a (non-standard) conditional operator “”. Formally, QL can be defined as the 
smallest set containing L and satisfying the following two clauses:  
 
(3) a.  if   QL then ?  QL 

b. if ,   QL then ()  QL 
 
Following the JH approach (Hulstijn 1997; Jäger 1996) we can formulate the following 
semantic update clauses where W is a set of possible worlds,  is a classical interpretation 
function (assigning subsets of W to the atomic propositional symbols), and  is an 
information state modelled by an equivalence relation over the logical space,   W2: 
 

(4) a. «p» = {(u,v)  W2: u(p) and v(p)} 

b. «» =  {(u,v)  W2: (u,u) «» and (v,v) «»} 

c. «» = «»«» 

d. «?» = {(u,v)  : (u,u)  «» iff (v,v)  «»} 
e.  «» = {(u,v)  «?»: if (u,v)  «» then (u,v)  «»«»} 

 
For atomic formulas p, the first clause expresses the elimination of all possibilities 
incompatible with p. Negation is modelled in (4b) by set complement. The use of the 
intersection operator in the definition makes sure that negation is a so-called declarative 
update (cf. Hulstijn 1997). In (4c) conjunction is modelled by function composition on 
updates leading to a sequential notion of conjunction. The definition (4d) defines question by 
equivalent relations where two worlds are considered equivalent if they give the same answer 
to question ?. 
 In the JH framework, the standard definition for  is used:   (). In order to 
model conditional questions the standard implication   () cannot be used. The 
reason is that the clause for negation is declarative, i.e. no structure can be induced under the 
scope of negation. But conditional questions give an interesting structure and for this reason 
JH have proposed an alternative definition for conditionals, , as shown in definition (4e). In 

this definition the restriction (u,v)  «?» is required. That means the antecedent of the 
conditional must become an issue. Leaving out this restriction it is not longer guaranteed hat 
the result is an equivalence relation (cf. Hulstijn 1997, footnote 10).  
 For an illustration we consider a fragment with two atoms p and q. Identifying possible 
worlds with functions assigning the truth values 1 (true) and 0 (false) to the atoms, we get 
four possible worlds abbreviated by 10, 11, 01, 00. Interpreting  atoms by sets of worlds in 
which the atoms are true gives the obvious assignments (p) = {10, 11} and (q) = {01, 11}.  
Figure 1 shows the meaning of p in inquisitive semantics. Here we are concerned with a 
single equivalence class that captures the logical space of p (set of worlds that make p true).   
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Figure 1: Picture of meaning p (assertion) in inquisitive semantics 

 
Figure 2 pictures the meaning of ?p in inquisitive semantics. It is constituted by two 
equivalence classes which partition the space W of possible worlds. 
 
 

 
 

Figure 2: Picture of meaning ?p in inquisitive semantics 
 

The meaning of the conditional interrogative  p?q is pictured in figure 3.  It is the partition 
of the logical space consisting of three blocks. The blocks of the partition correspond to the 
propositions expressed by pq, pq and p.  
 
 

 
 

Figure 3: Picture of meaning p?q in inquisitive semantics 
 
There is a controversy about this result, mainly concentrated on examples of the following 
kind (Velissaratou 2000): 
 
(5) A: If Mary reads this book, will she recommend it to Peter? 

B: Mary does not read this book.  
 
According to the Jäger/Hulstijn approach the answer given by (5B) should count as a 
(complete) answer, having the same status as the two other possible answer, namely “yes, he 
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will” and “no, he won’t”.4 However, there is a problem with this analysis. As pointed out by 
Isaacs and Rawlins (2005), responses like (5B) are not answers in the technical sense; i.e., 
they do not resolve the issue raised by the question. Instead, they indicate a species of 
presupposition failure. To say it in another way, the question in (5A) is about whether Mary 
will recommend the book to Peter. Denying the antecedent addresses the ground on which the 
question stands, not the question itself. The partition semantics taken by JH  fails in giving 
any indication about the different status of the three blocks of the partition. There are further 
problems with this approach, to mention only one: p?p comes out as semantically 
equivalent with ?p which is rather counterintuitive.  
 Concluding, we have seen some conceptual and empirical problems of the JH approach. 
The conceptual flaws are mainly related to the need of two different definitions of 
conditionals, one relating to the usual material implication, the other to the interrogative 
conditional. The empirical problems are due to the uniformity of the classical partition 
semantics which gives all blocks of the partition the same status.  

3. Ortho-Algebras 
A Hilbert space ℋ is a complete complex vector space upon which an inner product (= scalar 
product) is defined. The scalar product of two vectors u, v in ℋ is written in the form u|v. I 
assume some familiarity with the notion of a vector space and an inner product. For details, 
the reader is referred to introducing textbooks in linear algebra (e.g. Strang 2003).5   
 In the following we will make use of finite Hilbert spaces, i.e. Hilbert spaces which are 
spanned by a finite system S of linearly independent vectors, which can be assumed to be 
pairwise orthogonal, i.e. the scalar product of two vectors in S is zero. A linear operator a in 
ℋ is called a ‘normal operator’ if it satisfies the following condition: 
 
(6) a+a = aa+ 
 
Hereby the conjugate transpose a+ is defined by the following clause: 
 
(7) u|a+|v = v|a|u* for all vectors u, v in ℋ.6 
 
Special types of normal operators are projection operators in ℋ. Projection operators are 
simply defined by the property that their eigenvalues are 1 or 0. An equivalent definition 
states that they are idempotent, i.e. aa=a.   
 The concept of normal operators is very useful because normal operators have a spectral 
decomposition. That is, if a is a normal operator then a can be written as  
 
(8) a = i iai where ai  denotes a projection operator that projects the eigenvectors of a with 

eigenvalue i. The projection operators ai relate to distinct eigenvalues (i.e., i= j  i=j) 
 
In the spectral decomposition of a normal operator a, we can consider the projection operators 
ai as resulting from the application of the observable a to a possible value i of the 
observable. We will write this in the following form: 
 
(9) @(a, i) = ai  (where ai is the corresponding term of the spectral decomposition in (7)) 

                                                 
4 This possibility was also suggested by Groenendijk and Stokhof 1997, fn 29. 
5 Advanced readers could likewise consider introductions into quantum information science, e.g. Vedral (2006). 
6 Hereby, * denotes the complex conjugate, defined by (a + ib)* = a –ib (where a and b are real numbers, and i2 = 
-1). 



 7

The application device @ will be a useful instrument for formalizing the idea of a possible 
(full) answer to a question (see section 4  & 5).  
 Physical observables are represented by linear operators in a  Hilbert space ℋ exhibiting 
real eigenvalues.  They can be represented by Hermitian operators, i.e. operators satisfying the 
condition a+ = a. Projection operators always represent observables detecting whether a 
certain vector projects into a specified subspace. Using the spectral theorem, each Hermitian 
operator a can be decomposed into a sum of projection operators weighted by real numbers: a 
= i iai, with real eigenvalue i. In the present context it is useful also to consider non-
Hermitian normal operators which make use of so-called quaternions. Quaternions are a non-
commutative extension of complex numbers.7 In the following we will use the quaternions y 
and n to represent the answers ‘yes’ and ‘no’, respectively. The point is that that conjunction 
of yes/no questions leads to complex answers such as y n and n  y and we have to make sure 
that these answers can be different, i.e. the commutative law y n = n  y is disobeyed.8 
 The spectral theorem allows partitioning the Hilbert space ℋ into projection spaces. These 
subspaces are spanned by eigenvectors with a fixed eigenvalue. In quantum theory, these 
eigenvalues are necessary to reconstruct the observable from the partition. Hence, in quantum 
theory observables can be seen as decorated partitions (decorated by the eigenvalue). Hence, 
the spectral theorem (8) can be seen as generating a decorated partition of the system of 
eigenvectors. In the next section, I will investigate the idea of decorated partitions further, and 
I will use this idea for defining a new version of inquisitive semantics. In particular, I will 
show that most shortcomings of the JH approach can be resolved by using decorated 
partitions. 
 An algebraic system of projection operators can be defined straightforwardly. With the 
projection operators a and b also the projection operators ab, ab and a  are defined using 
the operations of intersection, union, and ortho-complement of the corresponding Hilbert 
subspaces. If we assume (= classical case) that all the considered projection operators are 
commuting we get the following facts:  
 
(10) a.  ab = ab 

   b. ab = a+b ab 
  c. a  = Ia  (where I is the identity operator) 

  
The notion of inference can be defined in the following way, where a and b are observables: 9 
 
(11)  a |= b  iff ab = a  
 
In the present framework, states of the system are represented by vectors in the Hilbert space, 
and observables (expressing propositions and questions) are represented by normal operators. 
In the simplest case the Hilbert space has two dimensions. An arbitrary orthogonal and 
normalized base of it is labelled {|1, |0} using Dirac’s notation. A physical system realized 
in this Hilbert space is called a qubit. Each pure qubit state is a linear superposition of |1 and 
|0: |u = |0 + |1. Each of the nontrivial observables in the two-dimensional Hilbert space 
has a discrete spectrum with two non-degenerate eigenvalues.10   

                                                 
7 The standard definition sees every quaternion as a unique and real linear combination of the basis quaternions 
1, i, j, and k: x = x0 + x1 i + x2 j + x3 k, with the set of equations i2 = j2 = k2 = ijk = –1. 
8 I thank Peter beim Graben who referred me to quaternions. 
9 It is exactly the relation |= that defines the lattice-theoretic properties of our ortho-algebra. 
10 Famous are the so-called Pauli matrices which provide base operators in terms of which every other operator 
can be defined.  
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 Pure states |u are uniquely related to certain projection operators written as |uu| using 
the Dirac notation: 
 
(12) |uu| (|v) = |u  u|v for each state |v of the Hilbert space 
 
Obviously these operators can have only the eigenvalues 0 and 1 and, thus, are projection 
operators. As an abbreviating notation we write bold u for the projection operator |uu|. Two 
commuting operators that can be formulated in the two dimensional Hilbert space are 0 and 1, 
realizing the projections of the two base states |0 and |1. Further, we use the notation I for 
the identity operator and  for the zero operator. It is simple to check that I = 0 + 1. All the 
operators 0, 1, I and  are commuting with each other and they can be seen as realizing the 
classical bit as subpart of the qubit.  
 In quantum theory complex systems are built by using tensor products . This operation 
applies both to vectors of the Hilbert space |u  |v and to linear operators u  v. If the 
context excludes misunderstandings, it is convenient to miss out the . Hence we will write 
|011 instead of |0|1|1 and 011 instead of 011. All projection operators that are built 
from summing up pure projections in the case of a 2n-dimensional Hilbert space (such as 000, 
001, 010, … in case of a 3 qubits) are pairwise commuting and realize a Boolean algebra. 

4. Ortho-Algebraic Semantics 
We can exclude the zero part of an observable (i.e. the vector space corresponding to 
eigenvectors with eigenvalue zero) from the partition since it doesn’t contribute to the sum in 
(8). In this way, an observable a can effectively be represented by a decorated partition of the  
non-zero part of the observable (i.e., Hilbert space ℋ minus the zero part of observable a). 
 For defining semantics, we start from a standard query language QL*, with a set of 
propositional variables p, q, r, …, negation , conjunction , disjunction , 
declarative ! and question ?. The semantics is defined relatively to a Hilbert space ℋ (and 
the ortho-lattice defined on it). Further, we assume an assignment function  that assigns 
projection operators in ℋ to the propositional variables. Then the semantic values for the 
formulas of L are defined as follows: 
 

(13) a. «p» = (p) 

b. «» =  i i ai
  where «»  = i iai (the spectral decomposition of «») 

c. «» = «» «» [assuming «» and  «» commute] 

d. «!»= («»|w = 0 |ww| ) 

e. «?» =  y«» + n«»  (‘y’, ‘n’ are quaternions for ‘yes’, ‘no’) 
 
Notice that the semantic value of  is a projection operator again if  is a projection 

operator. In this case, «» = I  «». If  is a yes/no question, then  turns the yes-answer 
into the no-answer and the no-answer into the yes-answer. Further, it should be noticed that 
the value of the conjunction is a projection operator only if the semantic values of the two 
conjuncts commute. In this case, the ordering of the conjuncts does not  matter. The semantic 
value of a declarative ! as defined by (13d) is a projection operator that projects the non-zero 
part of the semantic value of  (i.e. the ortho-complement of the zero part). Hence, the 

declarative operator ! can be seen as generating the non-zero part of  «». Equation (13e) 
gives the definition of the question operator (yes/no questions). If  expresses a proposition, 
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i.e. «» is a projection operator, then the question operator transforms this proposition into 
the corresponding yes/no question. 
 Now two further definitions are required: 
 
(14) a.  = () 

b.  = ()  
 
These definitions look very classical and they correspond to the classical Boolean operations 
if  and  are declaratives. The implication defined in (14b) is the Sasaki implication well-
known from quantum logic (cf. Dunn & Hardegree 2001). Interestingly, these definitions also 
apply in case one or both of these expressions are questions. This leads to surprising results, 
which will be discussed immediately after introducing some basic semantic concepts.  

We consider a propositional formula  (semantically represented by a projection operator) 

‘true’ in a situation |u iff |u is an eigenvector of «» with eigenvalues 1; formally: 
 

(15) |u |   iff  «»|u = |u 
 
Further, we can define the ‘span’ of a formula operator  as the relation between the eigen-

states of «» that have the same (non-zero) eigenvalues: 
 

(16) |u, v |=  iff  «»|u = |u and «»|v = |v for some 0 
 
Read |u, v |=  as ‘the pair of states spans   in a given model’. The span itself could be 
defined as the set of pairs of states that span . For expressions that are interpreted by 
projection operators (declaratives) the span doesn’t give more information than that provided 
by the truth condition; hence we have the following facts for declaratives :  
 
(17) a. |u, v |=  iff   |u |  and |v |   

b. |u |  iff |u, u |=  
 
Of course, the situation is different when we consider other observables than projection 
operators. These observables could be constructed by using the operations of sum, 
complementation and composition even in the classical case where all considered operators 
are commuting.  If  and  are declaratives, then the span of , ?, , , and  
can be calculated as follows given that the relevant operators commute with each other: 
 
(18) a. |u, v |=  iff  |u, u |  & |v, v |  

b. |u, v |= ? iff  |u, u |=   |v, v |=  
c. |u, v |= ? iff |u, v |= ? and  |u, v |=     |u, v |= ? 

 
Interestingly, these clauses conform to the inquisitive semantics as proposed by HJ. However, 
the present system is more structured than the JH system because it considers decorated 
partitions instead of standard partitions. To see the important differences let’s consider some 
simple examples.  
 In figure 2 the meaning of ?p in the JH inquisitive semantics was pictured. We see two 
equivalence classes which partition the space W of possible worlds. Figure 4 pictures the 
meaning of ?p in ortho-algebraic semantics. We see the same equivalence classes, but now the 
two blocks are decorated by the quaternions y and n, respectively,  corresponding to the two 
possible answers yes and no. 
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Figure 4: Picture of meaning ?p in ortho-algebraic semantics 
 

The meaning of the conditional interrogative  p?q was pictured in figure 3 for the JH 
semantics. Figure 5 shows the meaning of the related expression in the ortho-algebraic 
framework.  
 
 

 
 

Figure 5: Picture of meaning p?q in ortho-algebraic semantics 
 
The derivation of the relevant partition is as follows: 
 

«p?q» 
= (10+11)+(10+11)(y(01+11)+n(10+00)) 

= (00+01)+(y 11+n 10) 
 

In both cases the partition of the logical space consists of three blocks, corresponding to the 
propositions expressed by pq, pq and p. In the latter case these propositions are 
decorated: pq by y, pq by n, and p by 1. As before, we can take the first two decorations 
as indicating the traditional answer types yes and no; and we can take the decoration 1 as 
indicating the condition for a supposition failure.  
 The following example shows the composition of two questions ?p and ?q forming the 
composed question ?p ?q. Figure 6 pictures the corresponding meaning where the composed 
decorations yy, yn, ny, and nn are used. 

y 

n 

y n 

1 
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Figure 6: Picture of meaning ?p ?q in ortho-algebraic semantics 
 

Obviously, the parts of the complex quaternions are referring to the corresponding 
subquestions, e.g. in the world 10 the question ?p is answered by y and the question ?q is 
answered by n.  
 An important empirical problem, which any theory of questions and answer has to solve, 
relates to the proper characterization of congruent answers (e.g. Groenendijk & Stokhof 1997; 
Krifka 2001). In the simplest case of constituent questions a congruent question is just an 
answer that fills in a constituent for the wh-expression in the question. And a congruent full 
answer is just the question meaning applied to the term answer. 
 More formally, this can be expressed in the following way making use of the application 
device @ defined in (9): 
 
(19)  is a congruent full answer to a question  iff @(«», t) = «» for some element t 

of the spectrum of «». 
 
A simple example is in order. Clearly, the assertion p is a congruent answer to ?p. This 
derives from the observation that  @(«?p», y) = «p». Similarly, p is a proper answer to ?p 
since @(«?p», n) = «p».  

Consider now the following utterance of a question (20a) made by a competent speaker A. 
Congruent answers of a speaker B are the conditional answers presented in (20b,c). 
Intuitively,  conjoined answers such as in (20d,e) don’t count as congruent answers and are 
not very appropriate. 
 
(20) a. If Mary reads this book will she recommend it to Peter? 
  b. Yes. If Mary reads this book, she will recommend it to  Peter 
  c. No. If Mary reads this book she will not recommend it to Peter 
  d.  *Yes. Mary reads this book, and she will recommend it to Peter 
  e. *No. Mary reads this book, and she will not recommend it to Peter 
 
Interestingly, the JH approach does not predict the proper conditional answers but the 
conjoined answers. How to handle this problem in ortho-algebraic semantics? Does the 
definition given in (19) generalize to the idea of congruent answers in case of conditional 
questions?  
 Unfortunately, this doesn’t work in the case of conditional questions. However, a simple 
adjustment is possible and provides the proper generalization. The proposal is to change the 
definition by taking the proposition with the decoration 1 into account. As mentioned above  
this proposition is expressing  the condition for a supposition failure (see figure 5 for an 
example).  
 

nn ny 

yy yn 
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(21)  is a congruent full answer to a question  iff @(«», t) + @(«», 1) = «» for 
some element t of the spectrum of «».  

 
A consequence of this definition is that congruency is possible only with conditional answers 
for conditional questions. For instance, «pq» comes out as a congruent full answer to 
«p?q». We can derive  this fact from the equivalences «p?q» = «p» + «p»«?q» =  1«p» 
+ y«p»«q» + n«p»«q». The application @(«p?q», y) results in «p» and the application 
@(«p?q», 1) results in «p»«q». Consequently, the sum gives «p» + «p»«q», which is 
nothing else than «pq». Hence, according to definition (21), «pq» comes out as a 
congruent answer to «p?q». 
 Similarly, «pq» can be shown to be a congruent full answer to «p?q»: 
 

@(«p?q», n) + @(«p?q», 1) 
= «p» + «p»«q» 

= «pq». 
 
Further, since the two full answers given before are the only congruent answers to the 
question «p?q», «pq» cannot be a proper answer to «p?q». 
 Concluding this section, I claim that the present approach explains why informationally 
equivalent questions like “is the door open?” and “is the door closed?” have different 
meanings. Further it overcomes the conceptual imperfection of the JH approach: only one 
definition of the conditional is required in order to capture both the usual material implication 
of declaratives and the interrogative conditional connecting a declarative antecedent with a 
question. It also overcomes the main empirical problems of the JH approach due to the 
uniformity of the classical partition semantics which gives all partitions the same status. In the 
case of the interrogative conditional it indicates when an ‘answer’ counts as a species of 
presupposition failure. Moreover, it is simple to show that in ortho-algebraic semantics the 
equivalence between   pp? and ?p is not longer valid. And it resolves perhaps the biggest 
puzzle of the JH approach, which counter-intuitively predicts conjunctive answers for 
conditional questions.   

5. Comparison with the structured meaning approach 
In a seminal paper, Krifka (2001) argued for a structured meaning account of questions and 
answers (see also Krifka 2004). He demonstrated that the GS partition theory (and related 
approaches summarized as proposition set approaches by Krifka) runs into three problems:  
 

“It does not always predict the right focus structure in answers, it is unable to distinguish 
between polarity (yes/no) and a certain type of alternative questions, and it does not allow to 
formulate an important condition for a type of multiple constituent questions” (Krifka, 2001, p. 
287). 

 
Further, Krifka made clear in the same paper that the structured meaning approach can handle 
all three problems. Without going into a detailed discussion, I will illustrate here only the 
close correspondence of the structured meaning account and the present decorated partition 
theory. Krifka summarizes the basic idea underlying the structured meaning approach as 
follows: 
 

“Question meanings are functions that, when applied to the meaning of the answer, yield a 
proposition.” (Krifka, 2001, p. 288) 
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When we use the application device proposed in the previous section (instead of the operation 
of functional application in a -categorical language as proposed by Krifka), then we see 
immediately that our decorated partition semantics shares a basic trait with the structured 
meaning approach: question meanings can be applied to the meaning of (term) answers 
yielding a proposition. Interestingly, the presented application device @ and the definition of 
congruent answers given in (21) is also valid for conditional questions. As far as I can see, the 
structured meaning approach was not yet applied to conditional questions. It is an interesting 
task to extend this approach in order to include conditional questions – a task that possibly 
can be achieved by implementing the idea underlying the definition (21) into the structured 
meaning approach. However, I prefer to continue using the operator framework although it 
might be somewhat unfamiliar for traditional formal semanticists. I have two reasons for that. 
First, this formalism gives a very concise and elegant description of a theory of question and 
answers in case the reader is familiar with the basics of linear algebra. Second, this formalism 
straightforwardly generalizes to the non-commutative case that can be used to model 
phenomena of opinion forming including questions as used in personality diagnostics (Blutner 
& Hochnadel 2008). 

6. Conclusions 
Taking the lead from orthodox von Neumann quantum theory (Von Neumann 1932), I have 
introduced a handy generalization of the Boolean approach to propositions and questions: the 
ortho-algebraic framework.  I have demonstrated that this formalism relates to a formal theory 
of questions (or ‘observables’ in the physicist’s jargon). Surprisingly, this theory allows 
formulating conditional questions, and thus it provides the semantic power for managing 
inquisitive semantics. In the case of commuting observables, there are close similarities 
between the ortho-algebraic approach to questions and the Jäger/Hulstijn approach to 
inquisitive semantics. However, the present  approach is able to overcome most of the 
difficulties of the Jäger/Hulstijn approach. I have further demonstrated that the present 
approach can be seen as a decorated partition theory of questions and as such it is fully 
compatible with the structured meaning approach to questions. 
 The present theory should not only be of interest for scholars of formal semantics but also 
for scholar from the field of quantum theory. It is clear from physics that observables are 
questions of some kind but till now nobody looked at observables as real questions in natural 
language with their own semantics. As far I can see, this is the first attempt where the 
connection is made between physical observables and theories for the  semantics of questions. 
 An important methodological issue relates to the descriptive power  of a theory and its 
explanatory value. It could be argued that the present formalism is surely adequate when it 
comes to describe quantum phenomena in physics, but much too powerful when applied to the 
semantics of natural language. In fact, we have mainly discussed the case of commuting 
observables/question, i.e. we have restricted ourselves to the classical case of Boolean 
algebras.  Why then use such a powerful formalism? 
 There are several aspects that have to be discussed in this regard. First, there is the 
historical interest to relate the formal semantics of questions as developed by Groenendijk & 
Stokhof (1984, 1997), Krifka (2001) and others  with the formal treatment of observables in 
quantum physics (e.g. Birkhoff & von Neumann 1936; Dalla Chiara, Giuntini & Greechie 
2004; Kalmbach 1983; Piron 1976; Von Neumann 1932). One  result of this comparison is the 
observation that quantum physics relates to a decorated partition theory, which  has much 
more in common with a structured meaning approach than with the GS partition theory  of 
questions.  
 Second, the operator formalism of quantum mechanism allows a straightforward 
formulation of conditional questions by making use of the standard instruments of 
orthoalgebraic semantics. Possibly, we can implement the relevant ideas also in the more 
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traditional theory of structured meanings. However, the operator formalism seems to be very 
natural for a uniform treatment of questions, answers, and propositions. 
 Third, the full orthoalgebraic framework – without the restriction to commuting 
observables – can be useful for understanding how quantum-like features are generated on the 
macro-level of cognition. I have stressed this point in section 1 already and I have to stress it 
again at the end of this squib. The phenomena of opinion forming and the proper treatment of 
diagnostic questions as used in personality diagnostics are typical cases in point (for more 
discussion, see Blutner & Hochnadel 2008).  
 Another but related problem is the  proper distinction between uncertainty and ignorance, 
a problem that is highly relevant for any advanced theory of questions and answers. In 
general, ignorance is reasonable when the expected benefits of information are too small 
relatively to the costs. A typical situation are elections where people in general choose to 
remain uninformed (Downs 1957). In contrast, uncertainty refers to situations where people 
use statistical information to optimize their decision. Recently, it has been argued by Franco 
(2007b) that the behaviour of people under rational ignorance can be described best within the 
quantum mechanics formalism when the states of the system are described by vectors in the 
Hilbert space. Alternatively, a stochastic mixture of the eigenstates of the operators under 
discussion relate to people that reason under uncertainty. In rational-ignorance regime an 
uncertainty principle holds, which states that the product of the variances relevant to at least 
two questions has a non-trivial lower bound.  
 If there is a bit of truth in the supposition that the abstract formalism of  quantum 
mechanics will find useful applications in the domain of cognition, then this suggests that an 
active dialogue between the traditional model-theoretic approaches to semantics and the 
ortho-algebraic paradigm is mandatory.  
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